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Novartis is an innovative medicines company
Deliver high-value medicines that alleviate society’s greatest disease burdens through 
technology leadership in R&D and novel access approaches

Our focus Our priorities

Core therapeutic areas1

Cardiovascular, renal and metabolic; 
immunology; oncology; and 
neuroscience

4 priority markets
US, Germany, China, Japan

Technology platforms
Chemistry; biotherapeutics; xRNA; 
radioligand; gene and cell therapy

Unleash the power 
of our people

Scale data science 
and technology

Build trust with society

Embed operational 
excellence

Deliver high-value 
medicines

Accelerate growth Deliver returns Strengthen foundations

1. Other TAs opportunistically.



Data science driven drug discovery in Biomedical Research

Data Capture @ Novartis

3

Automated platforms to rapidly 
deliver high quality data
Med-chem assay & synthesis data

Data Use @ Novartis

ML and AI to guide decisions and 
inform projects
Designing molecules & synthetic routes

Future Vision

What’s next and what are the 
challenges we face?
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Design

MakeTHE DMTA

‘MicroCycle’Analyze

Test

Data Driven &
MedChem Inspired

Microscale Synthesis
& Purification

Assay Scale down 
& Automation

Integrated 
Streamlined
Analytics

Virtual Enumeration

Property 
prediction and 
selection

Liquid Handling
Mass Directed Purification

Model Building
AutoFocus

MicroCycle: Coupling data generation with machine learning

‘MicroCycle: An Integrated and Automated Platform to Accelerate Drug Discovery’ Novartis J. Med. Chem. 2024, 67, 2118-2128
‘Integrated and Automated High-Throughput Purification of Libraries on Microscale’ Novartis SLAS Technology 2022, 27, 350–360



Lab IT

&
Automated analytics & 

purification

Automated plating
systemAssay profiling system

Synthesis automation

Integrated & automated workflow



sulfinimine Addition Deprotection
8 SLAP reagents
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Aliquots for 
LC-MS

SLAP plate-based synthesis

• Morpholines & piperazines 
as common feature in 
many marketed drugs

• Access to highly decorated 
saturated heterocycles  rich 
in sp3 character

• MicroCycle HT assay 
capabilities enable us to 
track properties across a 
range of heterocycles

• Reaction data used to 
predict synthesisability

Collaboration with 
Prof. Jeffrey Bode

‘Fostering research synergies between chemists in Swiss academia and at Novartis’ Novartis Chimia (Swiss Chemical Society)
2021, 75 (11), 936-942.

‘High-throughput synthesis and data generation for the prediction of molecular properties and synthesizability’ Novartis & J. W.
Bode Science Advances 2023, 9, eadj2314



Mission1 Technology
Toolbox2 Reaction

Toolbox3

C–C 
Bonds

C–X 
Bonds

Cross-couplings

Hydrogenations and carbonylations

H2 CO

Maximise success  
of synthesis for  
desired targets

Reduced time to scale-up 
complex molecules for 
toxicology studies

Systematic chemical 
approach to useful 
transformations

Glovebox

Catalyst 
libraries

Screening 
kits

Automation

Chembeads

Plate-based 
HTE lab

Data 
generation

HT analysis

SynTech catalysis lab



Reaction condition screening in Global Discovery Chemistry

ChemBeads

Metal sources
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solid 

dosing
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Screening kits
or ad hoc

‘Wet’ Glovebox

Substrates Solvents

Sampling

Shaker

Analysis and
Visualisation of 

results

UPLC-MS

Automated 
liquid 

dosing

Workflow

Solving important chemistry questions



cBRIDP + [Pd(allyl)Cl]2

Me
P

tBu

tBu

Potent
inhibitor identification

(10 times jump in potency in LO)
Sterically Hindered 

Coupling

Premade Kit: 6 Catalysts x 4 Bases 24 Catalysts

C–X 
Bonds

Conversion

Yield

Unlocking difficult targets in lead optimisation

HTE chemistry brings high-
quality reaction data



Lab2Lab
Lab2NMR

400-O400-L

B2B

Lab2Lab

Lab2Lab
Lab2NMR

Lab2Lab
Lab2NMR

400-P160

35

12

60

25

Banting 1 
Instrument 
Hub 400-N

Lab2Lab

15 Lab2Lab

Basel Lab2Lab: Rapid access to analytical data

Lab2Lab for LCMS and NMR
Drop-off in your lab sender
Sample sent to free machine on 
campus using scheduling software
Data rapidly available in Signals 
eLN

Automated Structure Verification
Confirm structure by NMR
Assign peaks
Send analysis report with calculated 
measure of confidence



Synthetic fermentation: Bode

‘Predicting Three-Component Reaction Outcomes from 40k Miniaturized Reactant Combinations’ J. W. Bode et al, 2024, ChemRxiv



Synthetic fermentation: Bode

‘Predicting Three-Component Reaction Outcomes from 40k Miniaturized Reactant Combinations’ J. W. Bode et al, 2024, ChemRxiv

Construction and predictions of reaction outcome data on unprecedented scale

Miniaturisation and automation to conduct and analyse 50,000 reactions performed on a 3 µL scale with distinct substrates
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Data improvements: Integrative data analysis

Interactive dashboards, decision-making | 
Intuence Discovery

Data querying

Virtual molecules, 
new ideas, annotations

“One-pager” reports |
Intuence ReportsML & 

Data science

Data 
warehouse

Intuence
 FAIR principle

 Change the ownership paradigm: 
enable ‘Citizen Data Scientist’ culture 

 Project-centric one-stop-shop for all 
Discovery Data

 Integrate virtual and real 
compounds with measured and in 
silico data



solubility

novelty

potency

permeability

logP

selectivity

Selection using multi-
objective 

optimisation
Project data

Create virtual
chemical space 
using all possible 
available reagents

Project data
Project data

Best compounds for 
the next cycle

Selection

MicroCycle assay 
data

MicroCycle lab
synthesis

Drug hunting: Data-centric multi-objective library design
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Virtual library of ~2’800 compounds
Top 200: Potency + Uncertainty
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Compound B has a chance of 
being most potent and improves 
the model for the next iteration

Top right-hand 
corner favoured
 Likely to be 
potent & maximise 
information gain

How to best score and rank compounds



Predicted Log Solubility

Top 200: MPO
pIC50 + Uncertainty + log Sol. + log MDCK
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How does multi-parameter optimisation effect our choices?

• Final library selection done with ‘Human in the loop’



Were the library designs a success?



‘FOCUS — Development of a Global Communication and Modeling Platform for Applied and
Computational Medicinal Chemists’ Novartis J. Chem. Inf. Model. 2015, 55, 4, 896–908.

Predicted Potency

Predicted Potency

Predicted Uncertainty

• Large selection of internal and external building blocks
• Models trained on historic data (potency, selectivity, ADME, etc.)
• Novel selection algorithms used for multi-parameter prioritisation of building blocks

Democratising library design: Autofocus



[1] Winter, R. et al. Chem. Sci. 2019, 10, 1692–1701
[2] Jin, W. et al. arXiv 2019 https://arxiv.org/pdf/1802.04364.pdf
[3] Maziarz, K. et al. arXiv 2021 https://arxiv.org/pdf/2103.03864.pdf
[4] Pikusa M, et al. bioarXiv 2022 https://biorxiv.org/content/10.1101/2021.12.10.472084v1

Generative models: How to teach chemistry to computers?
String-based methods (e.g. CDDD1)

Graph-based methods (e.g. CGVAE2, MoLeR3) 

Many other approaches exist, major application: 
- Exploration: distribution learning (reproduce sets of molecules)
- Exploitation: goal-directed generation (search latent space without full sampling)

Representation 
Learning

DecodingRepresented as 
tokens

Decoding

Decoding

Conditional generation using [signatures, profiles, sequences] (e.g. pqsar2cpd4) 

De novo design cycle



GenChem: Chemical space exploration

Interesting exploitation of GenChem in areas between current series

Different embeddings and settings provide different exploration profiles

Cluster of highly 
active compounds 
(including lead series)

Project 
compounds GenChem results

Seed 
compounds 
in red

Pre-defined target property profile guides 
the search in the latent space

Predictive models used to determine 
properties of a new point in the latent space

Next steps: Post processing

Next challenge: How do we consider synthesisability?



Computer assisted synthesis planning (CASP)

Computer assisted 
retrosynthesis analysis

• Most advanced
• Ready for implementation
• e.g. commercially available 

software

Forward synthesis
predictions

• Early stage
• Data hungry
• e.g. internally 

built software

Autonomous 
synthesisFuture goal

Enhanced 
synthetic 
chemistry



Synthetic fermentation: Bode

‘Predicting Three-Component Reaction Outcomes from 40k Miniaturized Reactant Combinations’ J. W. Bode et al, 2024, ChemRxiv

Construction and predictions of reaction outcome data on unprecedented scale

Miniaturisation and automation to conduct and analyse 50,000 reactions performed on a 3 µL scale with distinct substrates



Synthetic fermentation: Bode

‘Predicting Three-Component Reaction Outcomes from 40k Miniaturized Reactant Combinations’ J. W. Bode et al, 2024, ChemRxiv

ML used to accurately 
predict the result of 
unknown reactions.

With the number of new 
BB’s, the difficulty of 
predictions increases

The impact of data set 
size on model training 
was analysed

Necessity of tailored 
data collection for 
optimising machine 
learning models in 
chemical synthesis

https://jugoetz.com/synferm-heatmap

Product A was the major product in 
55% of all reactions ↓ # BB’s contained in training set
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The digital future of synthesis...

Digital/automated 
labsComputer assisted 

retrosynthesis analysis
Reactivity

predictions

Recommendations/
knowledge transfer 

and integrations

Synthesis-aware
Generative 
Chemistry

Models powered on
chemistry databases

(structured, FAIR)

What we want to do...



...needs well organised and curated chemistry 
data

What we need to do...

Historical
ELN

BR Automated
Synthesis

CHAD Automated
Reactions

CHAD
ELN

Patent Literature
Literature

Structured and Curated
NVS Chemistry Database

.....and a culture which rewards high quality data input



The changing profile of a drug hunter

29

“... It is not that machines are going to replace chemists, it’s that the chemists who use machines 
will replace those that don’t. ...” Derek Lowe (In the Pipeline)

DigitalisationLate 1990s 2030s

Key domain expertise (chemistry, biology etc.)

Specific drug discovery (ADME, targets, ...)

Cross-domain knowledge

Data analysis / science

Estimated!
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