

Going with the Flow – The Use of Continuous Processing in Organic Synthesis

C. Oliver Kappe

Institute of Chemistry, University of Graz Center for Continuous Flow Synthesis and Processing (CCFLOW) - RCPE GmbH Graz, Austria www.goflow.at - @KappeLab

JOANNEUM

Continuous Processing – A Hot Topic in Both Industry and Academia

GOING WITH THE FLOW

Continuous reactors arrive in the drug industry P.13

HEMICAL & ENGINEERING NEWS

Thayer, A. M. *Chem. Eng. News* **2014**, 92 (21), p. 13

RARE DISEASE

tion proc

er the m

t advocates try nev

funding models **P.27**

PROS AND CONS

Continuous processes have advantages over batch methods, but they have challenges as well.

Advantages

- Low capital investment
- Less space required
- Safer with hazardous reactions
- Shorter processing times
- Possible novel chemistries
- Straightforward scale-up
- Need for less inventory
- Potential cost savings
- Better product quality
- Improved environmental impact

Challenges

- Competes with existing investments
- Mind-set change needed to shift
- Perception of higher risk
- New engineering/operating skills
- Lack of adequately trained people
- Equipment availability at all scales
- Up-front development demands
- Limitations with solids
- Mastery of start-up and shutdown
- Relatively untested regulatory path

Continuous Processing has Arrived in Big Pharma

Novartis to give MIT \$65m to find new way to produce drugs Focus on manufacturing

The Boston Blobe

By Todd Wallack, Globe Staff | September 28, 2007

Drug giant <u>Novartis</u> AG says it will give its Cambridge neighbor, MIT, \$65 million over 10 years to create a research program, likely to be the biggest in the world aimed at revolutionizing the way drugs are made.

The goal is to help companies move from making drugs in batches to using a continuous high-tech process that will save time and money.

GSK commits to continuous processing

Witty says it could be used on up to half of the company's drugs

February 19, 2013 | By Eric Palmer

The Mainstreaming of Continuous Flow API Synthesis

The pharma industry is moving toward commercial-scale continuous processes for small-molecule API manufacturing.

Jul 02, 2014 By Cynthia A. Challener Pharmaceutical Technology Volume 38, Issue 7

Vertex, J&J, GSK, Novartis all working on continuous manufacturing facilities

FDA supports the move as a way to improve quality in manufacturing

February 9, 2015 | By Eric Palmer

Lilly takes to continuous manufacturing with \$40m Irish investment

By Dan Stanton C 05-Apr-2016 - Last updated on 06-Apr-2016 at 11:03 GMT

GSK completes \$95m investment for continuous manufacturing in Singapore

By Ben Hargreaves 06-Aug-2019 - Last updated on 06-Aug-2019 at 16:18 GMT

Science of

Literature on Flow Chemistry, Microreactors and Continuous Processing

Micro Reactors

Chemistry and Engineering

Preparative Chemistry Practical Aspects in Bioprocessing, Nanotechnology, Catalysis and more

Edited by Esther Alza Flow and Microreactor Technology in Medicinal Chemistry

General Flow Chemistry Principles

The Hitchhiker's Guide to Flow Chemistry, Seeberger, P. H. et al. *Chem. Rev.* **2017**, 117, 11796

Anton Paar

3D Printed

Reactors

www.anton-paar.com

Typical Flow Reactors (Lab Scale)

THALESNANO

H-Genie Phoenix Pro www.thalesnano.com

CREAFLOW HANU Reactor www.creaflow.be

Vapourtec E-Series Flow System www.vapourtec.com

UNIQSIS

FlowSyn

www.uniqsis.com

Asia System

www.syrris.com

CORNING Advanced Lab Flow Reactor

Protrix www.chemtrix.com

EHRFELD Mikrotechnik Lonza FlowPlate Miprowa

Advantages of Microreactor/Continuous Flow Chemistry

- Very efficient mixing of the reactants (micromixing)
- Rapid heat transfer and temperature control (high surface-to-volume ratio)
- Enhanced mass transfer for multi-phasic reactions (e.g. gas/liquid)
- Control of residence/reaction times
- Hazardous reagents/conditions
- Multi step reactions in a continuous sequence
- Continuous in-line purification possible by:
 - liquid/liquid extraction
 - membrane technology
 - solvent evaporation/swap
- Integrated real-time analytics (PAT)
- Easy scale-up of a proven reaction by:
 - increase of time
 - numbering up (internal, external)
 - sizing up (geometry, length)

Microreactor for Flow Processing

Scale-Up by Smart Dimensioning

CCFLOW

JOANNEUM RESEARCH

Flow Chemistry in the Kappe Lab – Scalability and Manufacturability (CoG/Sustainability)

Flash Chemistry

High-T/p

Gas-Liquid

Hazardous Chemistry

Photochemistry

Electrochemistry

Multi-step/APIs

PAT/Process Control

APIs/Intermediates (Clinical Studies and Marketed Drugs) AstraZeneca Lonza AstraZeneca AstraZeneca **Lonza** AstraZeneca AstraZeneca ,Me HO₂S 0 ОН **PI3K** inhibitors ΗŃ .OMe AZD4573 OPRD 2015 1062 OPRD 2019 2445 CI HO νΟМе HN Me Abediterol Osimertinib Lanabecestat OPRD 2021 947 OPRD 2020 2217 JFC 2017 29, OPRD 2017 878, OPRD 2018 633 Roche Lonza Lonza ASKAT **Patheon** 🔅 Allergan. Μ HO, 'NH RG7774 HN HO OPRD 2021 1206 AAT-076 BAYER Galeterone CEJ 2022 e202200741 X-Ray Imaging F₂C н ACIE 2014 11557 ÓН Fenebrutinib OPRD 2014 1360 5-HT agonist OPRD 2021 1988 CEJ 2017 176 OH _cPatheon NHOH Remdesivir/Gilead HO OPRD 2021 1015 NC, "OH OPRD 2020 2362 HO HO ''OH medicines Molnupiravir/Merck for all EJOC 2020 6736 Vilanterol/GSK Vaborbactam Verubecestat/Merck HN-P'''OPh OPRD 2020 2208 Q, `OH CO 2020 24, 7 2018 3133 ACIE 2017 13786 JOANNEUM RESEARCH TU

JOANNEUM

Flash Chemistry - Synthesis of Epoxides via (Bromomethyl)lithium

lithiummethane to react with carbonyl compounds to give oxiranes more easily than the corresponding chloroderivative.

LiCH₂Br however is very unstable and is practically impossible to prepare even at -110° . We tried therefore to prepare it *in situ* in the presence of the carbonyl compound. For this purpose an equimolar solution of 5 α -cholest-3-one and CH₂Br₂ in THF were treated at -78° with a mole of BuLi in hexane. Work up yielded 20% of the expected oxirane together with the carbinol derived from the direct addition of BuLi to the carbonyl group.

Cainelli, G. et al. *Tetrahedron*, **1971**, *27*, 6109 Michnick, T. J.; Matteson, D. S. *Synlett* **1991**, 631

Challenges – Map of Side-Reactions

JOANNEUM

Plate Reactors (Ehrfeld)

- Lonza FlowPlate
- Very fast reactions (flow rate >1.5 ml/min)
 - Yield affected by heat exchange and mixing
- Plate-type heat exchanger
- Structured mixing channel

Plouffe, P. et al. Org. Process Res. Dev. 2014, 18, 1286; Plouffe, P. et al. Chem. Eng. J. 2016, 300, 9

Tubing vs Lonza FlowPlate

-35

-20

-10

Temp. [°C]

TG-Mixer 0.35 mL Channel width 0.2-0.6 mm Channel depth 0.5 mm

Tubing vs Lonza FlowPlate

von Keutz, T. et al. Org. Lett. 2019, 21, 10094

CCFLOW

Warran, T. K. et al. *Nature* **2016**, *531*, 381 cf. organolithium method: Siegel, D. et al. *J. Med. Chem.* **2017**, *60*, 1648 (~20% yield)

cf. flow C-glycosylation (Mg): von Keutz, T. et al. Org. Process Res. Dev. 2020, 24, 2362

https://www.gilead.com/purpose/advancing-global-health/covid-19/working-to-supply-remdesivir-for-covid-19 (June 24, 2020) cf. Jarvis, L. M. Scaling up remdesivir amid the coronavirus crisis, *Chem. Eng. News* **2020** (April 20)

Key C-Glycosylation Step – Batch Process (0.2 M, -78 °C)

Xue, F. et al. Org. Process Res. Dev. 2020, 24, 1772

- charge heterocycle (0.845 mol) and anhydrous THF (1.44 L) to oven-dried reactor under N₂ at 20 °C
- 2. stir for **10 min**
- 3. charge BCDMS (1.1 equiv) in THF (360 mL)
- 4. stir for **15 min**
- 5. charge diisopropylamine (1.1 equiv)
- 6. cool to -85 °C to -78 °C (**?? 1 h ??**)
- charge *n*-BuLi (2.5 M in hexane, 1.45 L, 4.3 equiv) within 4 h (-78 °C)
- 8. react for **30 min** (-85 °C to -78 °C)
- 9. charge lactone (2.0 equiv) in anhydrous THF (0.9 L) within 3 h (-85 °C to -78 °C)
- 10. react for **2 h** (-85 °C to -78 °C)
- 11. gradually warm to 0 to 10 °C (?? 1 h ??)
- 12. quench by addition of 1 M citric acid (3.6 L) at <25 °C (**10 min**)
- 13. work-up (62% yield by crystallization)

>12 h (full working day)

Key C-Glycosylation Step – Five Stream Flow Procedure (-30 °C)

von Keutz, T. et al. *Org. Process Res. Dev.* **2021**, *25*, 1015

Scalability Concept (Smart Dimensioning)

Roberge, D. M. et al. Chim. Oggi/Chem. Today 2009, 27, 8

TU Graz

EHRFELD Mikrotechnik

JOANNEUM

Continuous Nitration Towards Osimertinib Intermediate (Lab Scale)

Continuous Nitration Towards Osimertinib Intermediate (Pilot Scale)

- 0.45 kg/h
- ~11 kg/day

LL-Mixer A5 (11 mL) Channel width 0.5 mm Channel depth 1.25 mm

- arene/Ac₂O/H₂SO₄/HNO₃ = 1/1.2/1.1/1.1 (mol)
- residence time ~7 s (full mass transfer limited)
- 83% isolated yield (HPLC assay >99%)

Köckinger, M. et al. Org. Process Res. Dev. 2020, 24, 2217

larger structure of A5 LL-Mixers (~25 mL) width 0.7 mm × depth 1.75 mm (4 × A5 plates in series, ~100 mL)

Process Intensification - Translating Microwave Batch to Flow

- transition metal catalyzed C-X bond formation
- other metal-mediated processes
- metathesis, CH-bond activation
- cycloaddition reactions
- rearrangements
- enantioselective reactions
- organocatalysis, biocatalysis
- radical reactions
- oxidations, reductions
- heterocycle synthesis
- total synthesis
- solid- /fluorous phase synthesis
- immobilized reagents, scavengers and catalysts

Camera

solid phase peptide synthesis

Kappe, C. O. Angew. Chem. Int. Ed. **2004**, 43, 6250 (~3300 citations) Kappe, C. O.; Stadler, A.; Dallinger, D. "*Microwaves in Organic and Medicinal Chemistry*" Wiley-VCH, **2005** (2nd Ed **2012)** Kappe, C. O. Chem. Rec. **2019**, 19, 15

CC**FLOW**

Why High-T/p Processing? Speeding Up Chemistry (Arrhenius Law)

Batch Microwave 2-Methylbenzimidazol Synthesis

Temperature [°C]		t >99% conv (HPLC)
CONV	25	9 weeks
CONV	60	5 days
CONV	100	5 h
MW	130 (2 bar)	30 min
MW	160 (4 bar)	10 min
MW	200 (9 bar)	3 min
MW	270 (29 bar)	"1 s"

Batch Microwave Reactor (300 °C, 30 bar)

Damm, M. et al. *Org. Process Res. Dev.* **2010**, *14*, 215 cf. essay on microwave effects: Kappe, C. O. et al. *Angew. Chem. Int. Ed.* **2013**, *52*, 1088

Converting Batch Microwave to Continuous Flow Processing

Benzimidazole Synthesis

Damm, M.; Glasnov, T, N.; Kappe, C. O. Org. Process Res. Dev. 2010, 14, 215

Flow Chemistry

*T. N. Glasnov,** *C. O. Kappe**..... 11956-11968

The Microwave-to-Flow Paradigm: Translating High-Temperature Batch Microwave Chemistry to Scalable Continuous-Flow Processes

Microwaves not required! Conventionally heated flow reactors (coils or chips) fitted with back-pressure regulators can mimic the high temperatures and pressures attainable in a sealedvessel microwave instrument. Such devices can therefore be used to perform otherwise difficult to scale microwave chemistry (see scheme).

Glasnov, T.; Kappe, C. O. *Chem. Eur. J.* **2011**, *17*, 11956

Accessing "Forbidden" (and "Forgotten") Chemistries

More High-T/p Flow Chemistry (Lab Scale)

Newman-Kwart Rearrangement

Eur. J. Org Chem. 2009, 1321

Diels-Alder Reactions

Claisen Rearrangement

Methylations Using Dimethylcarbonate

Green Chem. 2012, 14, 3071

Fischer Indole Synthesis

Tetrazole Synthesis in Flow under High-T/p Conditions

Sartans (Angiotensin II Receptor Antagonists)

Two-Feed Continuous Flow Approach (In Situ HN₃)

Gutmann, B. et al. *Angew. Chem. Int. Ed.* **2010**, *49*, 7101; *J. Flow Chem.* **2012**, *2*, 8 Mechanism: Cantilo, D. et al. *J. Org. Chem.* **2012**, *77*, 10882; *J. Am. Chem. Soc.* **2011**, *133*, 4465

Tetrazole Synthesis in Flow under High-T/p Conditions

Cannabinoid Receptor 2 (CB2) Agonist (RG7774)

- Microwave batch to flow translation
- Process analytics in real time (NMR/FT-IR)
- Continuous flow synthesis and workup strategy (~80% yield after crystallization, 10 g/h productivity)

CC**FLOW**

*i*PrOAc at 0 °C

Sagmeister, P. et al. Org. Process Res. Dev. 2021, 25, 1206 cf. microwave batch procedure: Chandgude, A. L.; Dömling, A. Eur. J. Org. Chem. 2016, 2383

Tetrazole Synthesis in Flow under High-T/p Conditions

Cannabinoid Receptor 2 (CB2) Agonist (RG7774)

- Microwave batch to flow translation
- Process analytics in real time (NMR/FT-IR)
- Continuous flow synthesis and workup strategy (~80% yield after crystallization, 10 g/h productivity)

CCFLOW

JOANNEUM

Sagmeister, P. et al. Org. Process Res. Dev. 2021, 25, 1206 cf. microwave batch procedure: Chandgude, A. L.; Dömling, A. Eur. J. Org. Chem. 2016, 2383

JOANNEUM

Scaling-up Gas-liquid Reactions in Batch – Mass Transfer Limitations

Volume (mL)	5	25	50	100	250
Radius r (m)	0.014	0.021	0.025	0.033	0.043
Interfacial area a (m ² m ⁻³)	107	71	60	46	35

Review: Mallia, C. J.; Baxendale, I. R. Org. Process Res. Dev. 2016, 20, 327

Mass Transport Intensification in Flow

Gas-Liquid Flow Regimes - Interfacial Areas

- interfacial area in coil reactors is 50 to 700 m²m⁻³
- interfacial area in micoreactors up to 18.000 m²m⁻³

Mallia, C. J.; Baxendale, I. R. *Org. Process Res. Dev.* **2016**, *20*, 327 Yue, J. et al. *Chem. Eng. Sci.* **2007**, *62*, 2096

Other Factors

- higher solubility of gases in pressurized reactors (Henry's law)
- exact dosing using mass flow controllers, use of large stoichiometric excess (headspace) avoided
- safety aspects

Gavriilidis, A. et al. *React. Chem. Eng.* **2016**, *1*, 595; Pieber, B.; Kappe, C. O. *Top. Organomet. Chem.* **2016**, *57*, 97 Hone, C. A.; Kappe, C. O. *Top. Curr. Chem.* **2019**, *377*, 2; Kockmann, N. et al. *React. Chem. Eng.* **2017**, *2*, 258

Ozone Chemistry in Microreactors

Lonza

Switching Quench Inlets

Intensive gas-liquid mixing

Polterauer, D. et. al. *React. Chem. Eng.* **2021**, *6*, 2253 cf. flow ozonolysis in tubing (22 s): Irfan, M. et al. *Org. Lett.* **2011**, *14*, 984

Continuous Flow Approaches to the Abediterol Side Chain

Original Batch Procedure (Almirall)

very high potency β2-adrenoceptor agonist (kg demand)

Duran Puig, C. et al. (Almirall) WO2006/122788

Continuous Flow Approaches to the Abediterol Side Chain

Alternative Batch Procedure (AstraZeneca)

Munday, R. H. et al. (AstraZeneca) Tetrahedron Lett. 2019, 60, 606

Continuous Flow Approaches to the Abediterol Side Chain

"Telescoped" Flow Procedure

Prieschl, M. et al. *Green Chem.* **2020**, *22*, 5762 (step 1) García-Lacuna, J. et al. *Org. Process Res. Dev.* **2021**, *25*, 947 (steps 2-4)

Continuous Flow Photochemistry

Advantages of Light-Induced Reactions

- clean and safe method of activation
- economical
- generates complexity otherwise difficult to obtain
- but: difficult to scale (Beer-Lambert Law)

Flow Photochemistry

- uniform irradiation
- accurately controlled exposure time (flow rate)
- small amounts of solvent near to lamp (safe)
- scalable
- Reviews: Politano, F.; Oksdath-Mansilla, G. *Org. Process Res. Dev.* 2018, 22, 1045
 Cambie, D. et al. *Chem. Rev.* 2016, *116*, 10276; Buglioni, L. et al. *Chem. Rev.* 2022, *122*, 2752
 Elliott, L. D. et al. *Chem. Eur. J.* 2014, *20*, 15226; Bonfield, H. E. et al. *Nat. Comm.* 2020, *11*, 804
 Booker-Milburn, K. I. et al. *Beilstein J. Org. Chem.* 2012, *8*, 2025

CCFLOW

Building Capability: 10 Years of Flow Photochemistry in the Kappe Group

Home-Built Reactors

since 2013

- large selection of light sources (CFL, LEDs, blacklight)
- simple and versatile

Vapourtec UV150

since 2015

- tubing-based reactor
- LEDs and medium pressure Hg lamp

Corning Advanced-Flow Lab Photo Reactor

since 2018

- plate-based reactor
- LED arrays with a choice of 12 wavelengths

Combined capability to cover the whole spectrum of UV and visible photochemical transformations

Corning[®] Advanced-Flow[™] Photo Reactor – Lab Scale

- Small channel depth for effective irradiation
- Mixing structure for multiphasic reactions
- Improved temperature control
- Tuneable wavelength and intensity

- a) Huber thermostat (reactor plate temp. control)
- b) Control module
 - HPLC pumps
 - mass flow controller (gases)
 - thermostat control
 - system parameter monitor
- c) Reactor (2.8 mL) and LED housing
- d) Thermostat (LED plate temp. control)
- e) Lamp control module

NBS Benzylic Bromination Chen, Y. et al. *ChemPhotoChem* **2018**, *2*, 906 Ethylene [2+2] Williams, J. D. et al. *Org. Process Res. Dev.* **2019**, *23*, 78 Nitrosyl Chloride Lebl, R. et al. *React. Chem. Eng.* **2019**, *4*, 738 Catalyst-free ATRA Rosso, C. et al. *Org. Lett.* **2019**, *21*, 5341 Reduction of Ar-X Steiner, A. et al. *Eur. J. Org. Chem.* **2019**, 5807 ATRA Steiner, A. et al. *React. Chem. Eng.* **2021**, *6*, 2434

Iodoperfluoroalkylation of Alkenes (ATRA)

Wavelength	Yield [%]
365 nm	95
385 nm	97
405 nm	97
422 nm	95
450 nm	95
540 nm	88
610 nm	0

Iodoperfluoroalkylation of Alkenes (ATRA)

Wavelength	Yield [%]
365 nm	95
385 nm	97
405 nm	97
422 nm	95
450 nm	95
540 nm	88
610 nm	0

Wavelength	Yield [%]
365 nm	94
385 nm	94
405 nm	94
422 nm	34
450 nm	0
540 nm	0
610 nm	0

Iodoperfluoroalkylation of Alkenes (ATRA)

Continuous Benzylic Bromination – Lab Scale with Quench in Flow

2,6-Dichlorobenzylbromide (API Intermediate)

cf. BrCN/Br₂ generator: Glotz, G. et al. *Angew. Chem. Int. Ed.* **2017**, *56*, 13786 Steiner, A. et al. *Green Chem.* **2020**, *22*, 448

JOANNEUM RESEARCH

Steiner, A. et al. Org. Process Res. Dev. 2020, 24, 2208

JOANNEUM

HANU Reactor – Handling Solids in Flow

Pilot Scale Reactor (150 mL)

Dual Nickel/Photocatalytic C-N Cross-couplings

Iridium Complexes as Photocatalysts (Buchwald, MacMillan)

Carbon Nitrides as Photocatalysts (Antonietti, König, Pieber)

Gosh, I. et al. *Science* **2019**, *365*, 360 cf. Pieber, B. et al. *Nature Catal.* **2020**, *3*, 611; *Angew. Chem. Int. Ed.* **2019**, *58*, 9575

Iridium photocatalyst Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ 800 €/g Sigma-Aldrich

CCFLOW

mpg-CN inexpensive, solid, recycable

Semi-heterogeneous Photoredox Catalysis in the HANU Reactor

,CO₂Et

Pulsation characteristics optimized for narrow RTD

Rosso, C. et al. React. Chem. Eng. 2020, 5, 597

Electroorganic Synthesis – A Renaissance

Book

 Hammerich, O.; Speiser B. Organic Electrochemistry: Fifth Edition; CRC Press: Boca Raton, 2016

Electroorganic Synthesis – Advantages and Opportunities

Sustainable and Cost-Efficient

VS

KMnO₄ 1-2 €/mol LiAlH₄ 8 €/mol mCPBA 7 €/mol

Enabling

Common Opioid N-Demethylation Methods

Continuous Manufacturing of Opioid Derived APIs

Pd-Catalyzed Aerobic N-Demethylation

WO 2017184979, WO 2017185004

Gutmann, B. et al. Chem. Eur. J. **2016**, 22, 10393; ACS Sust. Chem. Eng. **2016**, 4, 6048; Eur. J. Org. Chem. **2017**, 914 Eur. J. Org. Chem. **2017**, 6505

Electrochemical N-Demethylation of Oxycodone

Jud, W. et al. Chem. Methods 2021, 1, 36

Electrochemical N-Demethylation of Oxycodone

Sommer, F. et al. ACS Sustain. Chem. Eng. 2022, 10, 8988

Comparison of Conventional and Electrochemical Procedures

	EtOCOCI	Electrochemical A	Electrochemical B
Type of reaction	Stochiometric Reagent	Electricity (Et ₄ NBF ₄)	Electricity (KOAc)
T [°C]	60	rt	rt
Workup	Extraction	Chromatography	Extraction
Solvent	CHCl ₃	MeCN/MeOH	EtOH
Yield [%]	60	89	98
Quench	50 L H ₂ O/kg oxycodone	-	-
Atom Economy	12	35	81
PMI (without solvent)	3.5	2.9	1.2
РМІ	37	62	15
EcoScale	49	60	90

Immobilized Organocatalysts for Chiral API Synthesis

Asymmetric Conjugate Addition nstitut In collaboration with Català d'Investigació M. A. Pericas at ICIQ, Spain Química 10 bar NEN Ph Ph СНО. PS NH ÓTBS 60 °C ,COOMe 20 min ĊOOMe ,СНО Paroxetine (SSRI) 7 h collection time (1 equiv.) COOMe 17.26 g (84% yield) AcOH (0.6 equiv) COOMe 2.47 g h⁻¹ 0.07 mL min⁻¹ (2 equiv.) 97% ee (E-factor: 0.7) neat Flow organocatalysis under solvent-free conditions 7-h long experiment under optimum flow conditions Isolation of analytically pure product by evaporation

Ötvös, S. et al. *Chem. Sci.* **2019**, *10*, 11141 Review: Ötvös, S.; Kappe, C. O. *Green Chem.* **2021**, *23*, 6117

CCFLOW

JOANNEUM

Telescoped Reductive Amination–Lactamization–Amide/Ester Reduction

Ötvös, S. et al. Chem. Sci. 2019, 10, 11141; ChemSusChem 2020, 13, 1800; Org. Lett. 2022, 24, 1066

Telescoped Synthesis of Agrochemical Intermediate Me₂N Me₂N "Trifludimoxazin" (BASF) NH₂ O₂N NO₂ H2N water diamino, intermediate dinitro intermediate (quench) Steinbrenner, U. et al. Me₂N (air/light sensitive) (explosive) WO 2015071087 A1, 2015 aq waste neat 60 °C, 20 min H_2 18 bar liquid/liquid BPR separator 2 min NH_2 Pd/C n glass 0°C AF2400 100% HNO₃ 80 °C static toluene H₂ in 20% oleum mixer 5 min **Batch Process (Patent)** 2.5 equiv methanol 86% (90% purity) **H-Cube Pro** (co-solvent) overall ~67% 37% HCI **Continuous Process** 1.2 equiv overall >80% BASE Quench -Nitration The Chemical Compan Phase Hydrogenation Gas Cyclization Liquid/liquid separation release extraction EP 15201920.4

Cantillo, D. et al. Org. Process Res. Dev. 2017, 21, 125

Lab of the Future: Integration of Multiple Types of PAT Tools to a Single Platform

Mass Flow Control **Reactant 2 Cascade Mixer** Reactant 1 Reactant 2 **Reactant 1** Outlet BROOKS ReactIR Capillary Probe Reactor thermostat \leq Heat Exchanger IR **T2** Lonza FlowPlate JUUUC LAB 0 Reactant 3 Temperature EHRFELD Mikrotechnik **Pressure Probes Reactant 3 Probes** JOANNEUM RESEARCH https://ehrfeld.com/en/products/mmrs.html TU

Laboratory of the Future: A Modular Flow Platform with Multiple Integrated PAT Tools for Multistep Reactions

Sagmeister, P. et al. React. Chem. Eng. 2019, 3, 1571

Model-based Strategies for Real-time Control of API Synthesis

Autonomous Continuous Flow Chemistry Platform

GSK Continuous API Manufacturing (Singapore)

Allford, G.; Hagger, B. 7th Symposium on Continuous Flow Reactor Technology for Industrial Applications, Delft, Netherlands, Sept 29-Oct 1, **2015** See also: Roberts, K. Chemistry and Industry Magazine **2016** (6), p. 31-33

End-to-End Continuous Manufacturing (MIT)

Novartis CM Facility (Basel)

Mullin, R. Chem. Eng. News 2019, 97 (17), p. 28

Pharmacy on Demand (DARPA)

Adamo, A. et al. *Science* **2016**, *352*, 61 Zhang, P. et al. *Chem. Eur. J.* **2018**, *24*, 2776 cf. Coley, C. et al. *Science* **2019**, *365*, Issue 6453, eaax1566

Conclusions – Continuous Processing and Flow Chemistry

- Safer, more robust (in-line PAT) and scalable processes
- New chemistries ("designer reagents") and processing windows in fit-for-purpose reactors
- Allows redesigning of APIs syntheses utilizing "forbidden" chemistries
- Cheaper and more sustainable access to APIs and essential medicines (on-site, on-demand)

Novartis Continuous Manufacturing Lab (2018)

Acknowledgements: CCFLOW Team and Funding Agencies

Center for Continuous Flow Synthesis and Processing (http://ccflow.at)

Der Wissenschaftsfonds.

