

Adressing underexplored anti-infective targets

Anna K. H. Hirsch IASOC 2022 24th of September 2022

@Helmholtz_HIPS @HirschLab

HIPS HELMHOLTZ Institut für Pharmazeutische Forschung Saarland

Antimicrobial Resistence (AMR) – the silent pandemic

Covid-19

- viral pathogen
- rapid global spread
- Containment of the pandemic through vaccines
- No therapeutic agents available
- high economic interest

AMR

- several bacterial pathogens
- slow but steady spread
- Vaccination not possible
- Therapeutic agents available (antibiotics),
 but loss of efficacy due to resistance
- hardly any economic interest

Spread of AMR According to WHO Very threatening

Antibiotics market is economically not viable, therefore **drug discovery** in **academia** and **public private partnerships** is essential for AMR!

Antimicrobial drug development

M. Miethke, ..., A. K. H. Hirsch, ..., R. Müller, Nature Rev. Chem. 2021, 5, 726–749.

No new Antibiotics

Development gap!

Quelle: wellcome.org

Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)

Projects at the department Drug Design and Optimisation

8

Protein-templated strategies

Dynamic combinatorial chemistry (DCC):

Lehn, Eliseev, Ramström, Greaney, Ernst, Vincent ...

Kinetic target-guided synthesis (KTGS):

Sharpless, Rademann, Deprez ...

- Reaction between building blocks is reversible
- Selection and amplification of best binder(s)
- Biocompatibility of reversible reaction

M. Mondal, ..., A. K. H. Hirsch, Angew. Chem. Int. Ed. 2014 & 2016

A. M. Hartman, ..., A. K. H. Hirsch, *ChemMedChem* **2020** R. P. Jumde, ..., A. K. H. Hirsch, *Chem. Sci.* **2021** W. Elgaher, ..., A. K. H. Hirsch, *in preparation*.

- Reaction partners bind to adjacent pockets
- Proper orientation
- Protein-templated irreversible reaction

M. Mondal, ..., A. K. H. Hirsch, *Chem. Eur. J.* **2016** F. Mancini, ..., A. K. H. Hirsch, *Chem. Eur. J.* **2020**,

D. Bosc et M. Mondal Chatm. Hzdzie Statichem. Soc. Rev. 2015, 44, 2455–2488. M. Y. Unver R. M. Stense J. H. Ritchie. Nak Rev. Hissen Diskney 2018. 61, 9395–9409.

Projects at the department Drug Design and Optimisation

Energy-coupling factor (ECF) transporters

The Basics

- Abundant class of importers for micronutrients in bacteria
- Subclass of ATP-binding cassette (ABC) transporters
- Transmembrane proteins
- Structure: 4 subunits (A, A', T, S)

Energising module

RibU

FolT

Cytoplasm

ADP + Pi

ATP

Memorane

- D. A. Rodionov et al. J. Bacteriol. 2009, 191, 42.
- D. J. Slotboom. *Nature Rev. Microbiol.* **2014**, *12*, 79-87.

Multiple hit-identification strategies

12

HO

13

Fragment HIT 1 validation

HIT 1 [2-hydroxy-5-(naphthalen-1-ylmethoxy)benzoic acid] profile

Fragment HIT 1 validation

HIT 1 optimisation

- OH and COOH are crucial
- **O** atom in the bridge could be replaced
- Naphthyl moiety not essential for activity

			in vitro	An	itibacterial prof	lie				
Code	Chemical Structu	re	IC ₅₀	S. pneumoniae DSM-11865 (PRSP)	e <i>E. faecium</i> DSM-17050 (VREF; vanA)	<i>E. faecalis</i> DSM-20478	HepG2 % growth inh. @100 µм			
HIT 1	но	\int	300 µм	MIC = 32 µм	МІС > 75 µм	МІС > 75 µм	20 ± 2			
			IC ₅₀	S. pneumoniae DSM-20566	S. pneumoniae DSM-11865 (PRSP)	<i>E. faecium</i> DSM-17050 (VREF; vanA)	<i>E. faecium</i> DSM-20477	<i>E. faecalis</i> DSM-20478	HepG2 % growth inh. @100 µм	t _{1/2} [min] mouse liver S9 /Cl _{int} [μl/min/mg]
Optir Hľ	nised 🔰 T 1	HIPS 6920	55 µм	8 – 16 µм	8 µм	32 µм	32-64 µм	32 µм	< 20	>120 / < 5.8

....

. . .

New screening assay

17

- 96-well plate format
- Multiparameter assay
- No protein reconstitution required

Spyridon Bousis Steffen Winkler Jörg Haupenthal

A. F. Kiefer, S. Bousis, M. M. Hamed, E. Diamanti, J. Haupenthal, A. K. H. Hirsch, J. Med. Chem. 2022, 65, 8869.

HELMHOLTZ Institut für Pharmazeutische Forschung Saarland

In silico screening of the HIPS library

	HIPS library: 2	,000 compounds			
MONA KNIME	 MW = 250–500 g mol⁻¹; × Fused aromatic tricyclic or k 700,000 compounds 	Ester derivatives igger			
Analytic platform	DOCKING by using LeadIT			Properties (HIPS-31	4)
ριατιστητ	ECF FolT2 in the <i>apo</i> state (PDB ID 5D7T)			IC ₅₀ (cell-based assay)	30–40 μM
HYDE	PAINS filter and Eli Lilly rules			S. aureus Newman	80% @ 3 µg/mL
	reactive compounds			S. pneumoniae DSM-20566	0.5
SeeSAR	Red-flagged torsionOnly 1 pose	orsion		S. pneumoniae PRSP	1
	TOP 1,000 poses			E. faecalis DSM-20478	7.8
	5 hits identified			E. faecium DSM-20477	3.9
	2 hits validated			A549	9.4 @ 100 µM
	$IC_{50} = 30-40 \ \mu M$		%growth inh. @48 h	HepG2	10.8 @ 100 µM
	$IC_{50} = 9 \ \mu M$			HEK293	43 @ 100 µM

S. Bousis, S. Winkler, J. Haupenthal, F. Fulco, E. Diamanti, A. K. H. Hirsch, Int. J. Mol. Sci. 2022, 23, 2637.

HIPS HELMHOLTZ Institut für Pharmazeutische Forschung Saarland

18

In cellulo target validation

19

Antimicrobial profile & cytotoxicity

HIPS-314

Properties	HIPS 314			
(transport-activity assay) L. delbrueckii	> 250 µM			
(cell-based assay) <i>L. casei</i>	% inh. @ 50 µM = 62			
S. aureus Newman (MIC μg/mL)	80% @ 3 μg/mL			
S. pneumoniae DSM-11865 (PRSP) (MIC µg/mL)	0.5			
S. pneumoniae DSM-20566 (MIC µg/mL)	1			
<i>E. faecalis</i> DSM-20478 (MIC μg/mL)	1			
<i>E. faecium</i> DSM-17050 (VREF; vanA) (MIC μg/mL)	8			
C. perfringens (MIC µg/mL)	0.7			
C. difficile DSM 1296 ATCC 9689 (MIC µg/mL)	4.9			
C. difficile DSM28645 (CD630Δerm) (MIC µg/mL)	4.9			
C. difficile serial No. 01104431 (MIC µg/mL)	4.9			
C. sporogenes (MIC µg/mL)	9.8			
Pseudomonas Aeruginosa (MIC μg/mL)	> 24			
HepG2 (% growth @ 48h)	11% @ 100 µM			
A549 (% growth @ 48h)	9% @ 100 µM			
Hek293 (% growth @ 48h)	42% @ 100 µM			

HIPS-314

	MIC [μM]						
Compound	E. faecalis DSM-20478	E. faecium E. faecium DSM-17050 DSM-20477		S. pneumoniae DSM-11865	S. pneumoniae DSM-20566		
HIPS314	32	32	64-32	16	8		
HIPS314NB	>128	>128	>128	>128	>128		

→ Check purity
→ Check chemical identity

Summary – ECF transporters

- Two novel chemical classes identified as hits by SBVS
- Structure–activity relationships established
- MD simulations corroborated allosteric mode of inhibition
- Good oral bioavailability
- New whole-cell screening assay
- \rightarrow Further hit-to-lead optimisation focusing on multiple parameters

Projects at the department Drug Design and Optimisation

22

β-Sliding clamp (DnaN)

- Ring-shaped homodimer of β-subunit of bacterial DNA polymerase III
- Attractive target:
- Essential for DNA replication (efficacy)
- Highly conserved in bacteria (broad spectrum)
- Distinct from eukaryotic counterpart (therapeutic selectivity)
- Low frequency of resistance and high fitness costs, e.g., griselimycins (GMs)
- Limitations of current inhibitors
- Natural: lipophilicity, hepatotoxicity, only mycobacteria
- Synthetic: weak or no antibacterial activity

1. Dynamic combinatorial chemistry (DCC)

- Protein-templated strategy combining synthesis and binding assay in one step
- **Reversible** reaction, *e.g.*, acylhydrazone formation

Overlay of GM (yellow) and the universal clamp-binding motif [AcQLDLF] (cyan) with DnaN (grey)

1. Dynamic combinatorial chemistry (DCC)

Hit validation

26

2. Kinetic target-guided synthesis (KTGS)

- Protein-templated irreversible reaction, *e.g.*, alkylation, 1,3-dipolar cycloaddition
- New chemical space: Ugi 4-component reaction

Design of two KTGS libraries

F. Mancini, *et al.* (in preparation).

27

HIPS HELMHOLTZ Institut für Pharmazeutische Forschung Saarland

2. KTGS: hit detection and validation

4. Structure-based virtual screening (SBVS)

Mtb DnaN-CGM cocrystal* & SB Ph4 query

Validated hits

Bacterial strain / cell line	Affinity / MIC / IC ₅₀ (µM)
M. smegmatis DnaN	50
<i>M. tuberculosis</i> H37Rv	32
M. marinum	32
<i>M. smegmatis</i> mc ² 155	4
<i>M. smegmatis</i> , GM ^R	16
S. aureus	8
S. pneumoniae	16
E. faecium VRE51559	8–16
<i>E. coli</i> ∆acrB	8
E. coli K12	55
<i>E. coli</i> DSM-1116	128
A. baumannii	64
K. pneumoniae DSM-30104	64
P. aeruginosa PA14	128
HepG2	>111

A. Kling, P. Lukat et al., *Science* **2015**, *348*, 1106–1112. W. A. M. Elgaher et al. (patent application and manuscripts in preparation).

HIPS HELMHOLTZ Institut für Pharmazeutische Forschung Saarland

4. SBVS: mode of action and hit optimisation MANNY> CHWW24 MAMA79 WANNA'S MANA 27 OC SUPA FEM.72 FEM. 78 VAN.F. Cot 30 Inhibitor (120 µM) M (kbp) Μ

E. coli DNA replication assay

Crystal structure of R. typhi DnaN-WAM-N17 complex at 2.2 Å

HIPS

- Novel chemotype
- Low micromolar affinity and IC₅₀ values
- Broad antibacterial activity (MDR pathogens)
- Rapid bactericidal effect with no cytotoxicity
- Crystal structure and SAR (85 derivatives)

with Nicholas Dixon

HELMHOLTZ Institut für Pharmazeutische Forschung Saarland

A. Kling, P. Lukat et al., Science 2015, 348, 1106–1112. W. A. M. Elgaher et al. (patent application and manuscripts in preparation).

Projects at the department Drug Design and Optimisation

Pathoblocker approach

preserve commensal bacteria

PoC: Clostridium difficile Toxin B (Bezlotoxumab, Merck, Sharp & Dohme); approved in 2017

Target disease

Hospital-acquired pneumonia (HAP) and ventilator-associated bacterial pneumonia (VAP) caused by Pseudomonas aeruginosa

✤ 86% of nosocomial infections associated with mechanical ventilation¹

HAP and VAP represent a serious clinical concern

- High mortality (>20%) in spite of antibiotic therapy
- High number of cases (300k cases per year in the US)
- High healthcare burden

!!! Development of novel drugs urgently needed **!!!**

¹ Koenig and Truwit, 2006, Clin Microbiol Rev, doi:10.1128/CMR.00051-05

TPP: pneumonia therapy (HAP / VAP)

Product characteristic	Acceptance Criteria				
Indication for use	Definitive adjunctive therapy of HAP / VAP due to confirmed <i>P. aeruginosa</i>				
Target population	Hospitalized risk patients with documented <i>P. aeruginosa</i> pneumonia, when de-escalating from				
	empirical antibiotic treatment regime. Trials may be confined to HAP or VAP. A convincing				
	demonstration of efficacy in VAP could support an indication that includes HAP (~30% of patients as				
	a minimum should have VAP). Patients with HAP should have been hospitalized for at least 48 hours				
	before onset of the first signs or symptoms or these should occur within 7 days of hospital discharge.				
	Patients with VAP should have received mechanical ventilation via an endotracheal or nasotr				
	tube for at least 48 hours.				
Point of care diagnostic	re diagnostic Detected LasB, e.g. multiplex PCR for pathogen detection, detection of LasB antigens / mRNA				
Active pharmaceutical	Small-molecule LasB inhibitor				
ingredient (API)					
Contraindication	Antagonism with SOC (Piperacillin/Tazobactam, Cefepim, Imipenem, Meropenem, Ceftazidim)				
Safety	Benefit > risk				
Measures of efficacy	Reduced 28d all-cause mortality; reduced risk of <i>P. aeruginosa</i> bacteremia				
Unmet medical need	High mortality				
Dose regimen	tbd, compliant with SoC antibiotic therapy				
Route of administration	intravenously				
Target validationSubject to further target validation (Zupetic J et al. 2021, PMID: 33878342)					

Pseudomonas aeruginosa LasB as target

- P. aeruginosa classified as highest ("critical") priority by the WHO
- Causes lung infections, e.g. in HAP/VAP patients

Elastase (LasB)

- Secreted zinc-metalloprotease
- Degrades elastin and collagen (→ tissue penetration)
- Degrades components of the host immune system (\rightarrow immune evasion)
- Involved in biofilm formation

Targeting bacterial virulence to disarm *P. aeruginosa* rather than kill it

- LasB-expressing *P. a.* PAO1 more virulent in mice than Δ*lasB*-PAO1¹
- LasB activity associated with increased 30-day mortality in IC patients

¹ Bastaert F *et al.*, **2018**, *Front Immunol.* 9, 1675. doi: 10.3389/fimmu.2018.01675. ² Zupetic J *et al.*, **2021**, *Chest* 160, 1624-1633. doi: 10.1016/j.chest.2021.04.015

HIPS HELMHOLTZ Institut für Pharmazeutische Forschung Saarland

Hit-identification strategies

HIPS HELMHOLTZ Institut für Pharmazeutische Forschung Saarland

New LasB inhibitors

41

N-Aryl-3-mercaptosuccinimides as inhibitors of LasB

Medchem optimisation (35 derivatives):

- High selectivity over most of the MMPs and other off-targets
- No signs of cytotoxicity against human cell lines
- Improved chemical stability

31 sB) = 3.5 ± 0.1 μM	

	29
MMP-1	n.i.
MMP-2	38.7 ± 32.1
MMP-3	n.i.
MMP-7	n.i.
MMP-8	83.9 ± 8.2
MMP-14	n.i.
HDAC-3	>100
HDAC-8	>100
TACE	5.2 ± 0.6
	MMP-1 MMP-2 MMP-3 MMP-3 MMP-7 MMP-8 MMP-14 HDAC-3 HDAC-3 HDAC-8

n.i. = <10% inhibition

Jelena

Konstantinovic

Alaa Alhayek Andreas Kany

Jörg Haupenthal

Compound 31: 10x less toxic in zebrafish compared to published LasB inhibitor (MTC = 10 µM)

HepG2

HEK293

A549

LD₅₀ (µM)

29

>100

>100

>100

Zebrafish facility at HIPS

HIPS HELMHOLTZ Institut für Pharmazeutische Forschung Saarland

Rational fragment growing and optimisation

No signs of cytotoxicity against human cell lines

C. Kaya et al., Angew. Chem. Int. Ed. 2022
C. Kava et al. PCT/EP2021/073381

HDAC-3

HDAC-8

n.i. = <10% inhibition

n.i.

n.i.

with J. Köhnke

Activity of new inhibitors in cell-based assay and in vivo

Effect on lung cell line (A549)

Hit-to-lead optimisation

Co-crystal structure – HIPS-5900

Benzene rings allows for additional hydrophobic interactions

HIPS-5900 IC₅₀ = 8.5 ± 0.5 nM

unpublished results

Target lead profile (TLP) guiding the hit-to-lead activities

	Criteria	TLP	HIPS-5704	HIPS-5894	HIPS-6271	HIPS-6466
	Physicochemical Properties					
	Molecular Weight [Da]	<500	285	373	407	412
	Solubility [µM]	>100	>200	>200	>200	>200
	LogD7.4 chromatographic	-0.5 to 0.5	-0.64	0.04	0.2	-0.04
	In vitro Activity					
	LasB inhibition <i>in vitro</i> , IC50 [nM]	<200	97	102	15	5.0
	LasB inh. in presence of pulmonary surfactant (1%) [nM]	<3x IC50	120	193	39	11.7
	Pulmonary A549 cell assay, IC50 [µM]	<2	0.4-0.7	n.d.	n.d.	n.d.
	Antibacterial activity against PA14, MIC [µM]	>100	>100	>100	>100	>100
	In vitro and in vivo ADME/T					
	Activity toward MMPs 1-3, IC50 [µM]	>50	>100	>100	>100	>100
	Activity toward ADAM17, IC50 [µM]	>50	>100	>100	>100	>100
	Activity toward COX1, IC50 [µM]	>50	>100	>100	n.d.	n.d.
Results are	Metabolic stability in mouse liver S9 t1/2 [min]	>30	>120	>120	>120	>120
given for	Metabolic stability in human liver S9 t1/2 [min]	>30	>120	>120	n.d.	>120
e inhibitors	Stability in mouse plasma t1/2 [min]	>30	>150	>150	>150	>150
Green flag:	Plasma protein binding, mouse plasma [%]	80 to 95	91.8	89.9	95.0	88.3
fulfills TLP	Cytotoxicity toward A549, HepG2, HEK293 IC50 [µM]	>50	>100	>100	>100	>100
criteria; yellow: TLP criteria	Preliminary in vivo PK (IV route)	ELF >100 ng/mL a 2 mg/kg dosing IV (5 h)	968	814	5,627	3,292
missed up to	Ex vivo Target Engagement					
10-fold; red:	Pig lung homogenate model IC50 [µM]	<2	0.385	0.355	0.119	0.176
TLP criteria	In vivo Target Engagement and Profiling					
fold. N.d. = not determined.	Neutropenic lung inf. model with <i>P.a.</i> , subcut. route	Effective at 30 mg/kg in combination with levofloxacin	n.d.	n.d.	n.d.	Effective

Summary – LasB

- Highly potent LasB (+MBL) inhibitors in various chemical classes
- No inhibition of relevant human off-targets
- Co-crystal structures for various LasB inhibitors available
- Excellent in vitro ADME-T profile
- Very promising retention of compounds in the lung and ELF
- Promising in vivo PD data (Galleria mellonella and mouse models)
- \rightarrow Excellent starting point for lead optimisation

Conclusions

Acknowledgements

LasB

Dr Jörg Haupenthal Dr Jelena Konstantinovic Dr Andreas M. Kanv Dr Ahmed Saad Dr Ravindra Jumde Dr Alexander F. Kiefer Dr Christian Schütz Dr Sebastian Adam Dr Asfandyar Sikandar Dr Gwenaëlle Jézéquel Alaa Alhayek Andreas Klein Cansu Kava Dr Virgyl Camberlein Samira Speicher Selina Wolter

ECF project Dr Eleonora Diamanti Dr Mostafa Hamed Dr Leticia Monjas Spyridon Bousis Dr Alexander F. Kiefer

ECF collaboration partners:

Inda Setyawati Dr Lotteke Swier Prof. D. J. Slotboom

Zebrafish toxicity Anastasia Andreas Yu-Mi Park Prof. Rolf Müller (HIPS)

LasB collaboration partners:

Prof Jean-Michel Sallenave (INSERM, Paris) Prof. Jesko Köhnke (Glasgow University) Dr Katharina Rox (HZI)

52

DnaN: Dr Walid Elgaher Federica Mancini Uladislau Hapko Ahmed Elmaamoun

DnaN collaboration partners: Prof. Rolf Müller (HIPS) Prof. Wulf Blankenfeldt (HZI) Dr Norbert Reiling (FZ Borstel) Prof. Mark Brönstrup (HZI) Dr Marcus Gastreich (BiosolveIT)

HIPS HELMHOLTZ Institut für Pha

Institut für Pharmazeutische Forschung Saarland