

Sustainable Catalysis – Concepts and Applications

Magnus Rueping

IASOC - 2018

KAUST Catalysis Center

Current Research Topics

Bioactive Substances

Homogeneous

Surfaces/Polymers

Reaction & Separation Technologies

New Reaction Development

Natural Product Inspired Methodology Development

Muscarinic acetylcholine receptor antagonist and shows neurological activities

Potential use:

motion sickness, gastrointestinal spasms renal spasms, irritable bowel syndrome

(+)-Gephyrotoxin

Dendrobatidae alkaloids:

Isolation (1974): 15 mg from 3200 frogs

Isolation/elucidation: (X-ray): Daly, J.W. *Helv. Chim. Acta.* 1977, *60*, 1128

Syntheses:

Kishi, Y. *J. Am. Chem. Soc.* 1980, *10*2, 7154 Overman, L. *J. Am. Chem. Soc.* 1983, *105*, 5373 Hart, D. *J. Am. Chem. Soc.* 1983, *105*, 1255 and several formal syntheses

Perhydrogephyrotoxin

dentrobates histrionicus

 \sum

decahydroquinoline

indolizindine

Perhydrogephyrotoxin Syntheses: Overman, L. *J. Am. Chem. Soc.* 1980, *10*2, 1454 Hart, D. *J. Org. Chem.* 1981, *46*, 3576

Combining metal- and organocatalysis

Hydrogenation of quinolines

Organocatalytic multi-component reaction

Dealkoxylative C-C cross coupling

Natural Product Inspired Methodology Development

Combining metal- and organocatalysis

Biomimetic Organocatalysis

Biomimetic Metal-free Hydrogenation

Aminations in Nature

Routes of Ammonia Assimilation into Amino Acids Glutamate Dehydrogenase (GDH)

2-ketoglutarate + NH_3 + NAD(P)H \longrightarrow glutamate + $NAD(P)^+$

Θ

H

 Aspartate-165 is essential for catalytic activity

Brønsted Acid Catalyzed Transfer Hydrogenation

See also: List, MacMillan, You, Gong and over 40 other groups

D. Mauzerall, F.H. Westheimer, J. Am. Chem. Soc. 1955, 77, 226 Studies on the hydride transfer from Hantzsch esters

Plausible Mechanism

Catalytic Cycle

E. Sugiono, C. Azap, T. Theissmann Org. Lett. 7, 3781-3783

Biomimetic Brønsted Acid Catalyzed Reductions

87-99% ee

89-94% ee

<u>, н</u>

۰H

R

87-92% ee

R

91-99% ee

RO

R'

H

"NADH"

.н

91-99% ee

`OR

`R'

82-96% ee

96-99% ee

90-99% ee

OH

Άr

"dehydrogenase"

NHSO₂CF₃

ACIE 45, 3683; ACIE 45, 6751; ACIE 46, 4562; ACIE 47, 5836; ACIE 48, 7556; Chem. E. J 16, 2688; Chem. Sci. 1, 473

Mechanism of the Brønsted Acid Catalyzed Cascade Reduction

Combining metal- and organocatalysis

Lukas Hubener, Matthias Leiendecker

Combining metal- and organocatalysis

2 catalysts – 3 components

Combining metal- and organocatalysis

Asymmetric dearomatization / hydrogenation

Natural Product Inspired Methodology Development

Combining metal- and organocatalysis

Asymmetric dearomatization / hydrogenation

Dealkoxylative C-C cross coupling

Natural Product Inspired Methodology Development

Combining metal- and organocatalysis

Lukas Hubener, Matthias Leiendecker

Combining metal- and organocatalysis

ArI > ArBr = ArOTf >> ArCI = ArOTs >> ArOMe

M. Leiendecker, C.-C. Hsiao, L. Guo, N. Alandini, M.R. ACIE, 53, 12912

Direct replacement of a MeO-Group by a long chain alkyl group

Recent overview: Nickel catalyzed C-O bond cleavage: Garg, Percec *Chem. Rev.* 2011, 111, 1346; R. Martin, *Chem. Soc. Rev.* 2014, *43*, 8081-8097, M. Tobiso, N. Chatani, *Acc. Chem.Res.* 2015, *48*, 1717-1726; Z. Shi, Homogeneous Catalysis for Unreactive Bond Activation Wenkert, Dankwardt, Kakiuchi, Chatani, Tobiso, Shi, Martin, Nicasio/Prieto, Uchiyama, Snieckus, Itami, Garg, Hartwig, Han, Feringa, Jarvo, Wang,....

Direct replacement of a MeO-Group by a functionalized nucleophile

M. Leiendecker, C.-C. Hsiao, L. Guo, N. Alandini, M.R. ACIE 53, 12912

Direct replacement of a MeO-Group by a functionlized nucleophile

One pot operations

M. Leiendecker, C.-C. Hsiao, L. Guo, N. Alandini, M.R. ACIE, 53, 12912

Direct replacement of a MeO-Group by a functionalized nucleophile

Direct replacement of a MeO-Group by a long chain alkyl group

Direct replacement of a MeO-Group by a long chain alkyl group

Use of AIR₃ in cross couplings: Nakamura, Knochel, Beletskaya, Chatani, Tobisu, Schmalz ... AIMe₃ in CO-Me exchange: Tobisu, Chatani, *Chem. Lett.* 2015, 44, 1729

Direct replacement of a MeO-Group by Lewis acid assisted cross coupling

Proposed Mechanism based on experiments and DFT calculations

Proposed Mechanism based on experiments and DFT calculations

Direct replacement of a MeO-Group by Lewis acid assisted cross coupling

Direct replacement of a MeO-Group by Lewis acid assisted cross coupling

Recent reaction developments in homogeneous metal catalysis нН HO. C-OMe Bond activations – dealkoxylative Nickel catalyzed cross-couplings NH₂ SiMe₃ Ph \mathbb{R}^1 HN= SiMe₃ Li Ph Org. Lett. 2017, 19, 1788 ACIE. 2014, 53, 12912. OMe R¹-R_{alkyl}—ZnBr (9-BBN)—R_{alkyl} **R**alkyl $(R_{alkyl})_3 Al$ R_{alkyl} \mathbb{R}^{1} R¹

ACS Catal., 2017, 7, 4491

28

Nickel

ACIE, 2016, 55, 15415.

ACS Catal., 2016, 6, 4438.

ACIE, 2016, 55, 6093.

R_{alkyl}

 \mathbf{R}^1

Ni-Catalyzed Alkoxy-Alkyl Interconversion with Alkylboranes

Ni-Catalyzed Alkoxy-Alkyl Interconversion with Alkylboranes

ArOMe-alkylation with Grignard reagents: M. Tobisu, T. Takahira, T. Morioka, N. Chatani, JACS, 2016, 138, 6711

Ni-Catalyzed Alkoxy-Alkyl Interconversion with Alkylboranes

Ni-Catalyzed Alkoxy-Alkyl Interconversion with Alkylboranes

Catalytic Dealkoxylating C_{sp2} - C_{sp3} Cross Coupling Reactions

Ni-Catalyzed Sequential Alkylation with Alkylboranes

Catalytic Dealkoxylating C_{sp2}-C_{sp3} **Cross Coupling Reactions** Ni-Catalyzed Alkylation with Alkylboranes

L. Guo, C.-C. Hsiao, H. Yue, X. Liu, M. Rueping, ACS Cat., 2016, 6, 4438

Catalytic Dealkoxylating C_{sp2}-C_{sp3} **Cross Coupling Reactions** Ni-Catalyzed Alkylation with Alkylboranes

L. Guo, C.-C. Hsiao, H. Yue, X. Liu, M. Rueping, ACS Cat., 2016, 6, 4438

Catalytic Decarbonylative Cross Coupling Reactions

Ni-Catalyzed Decarbonylative Catalysis

First example: T. Yamamoto, J. Ishizu, T. Kohara, S. Komiya, A. Yamamoto, *JACS*, **1980**, *102*, 3758 *Representative examples for Ketones from esters*: H. Tatamidani, F. Kakiuchi, N. Chatani, *Org. Lett.* **2004**, *6*, 3597;
H. Tatamidani, K. Yokota, F. Kakiuchi, N. Chatani, *J. Org. Chem.* **2004**, *69*, 5615 *Amides from esters*: L. Hie, N. F. F. Nathel, X. Hong, Y. F. Yang, K. N. Houk, N. K. Garg, *ACIE* **2016**, *55*, 2810 *Biaryls and alkynes from esters*: K. Amaike, K. Muto, J. Yamaguchi, K. Itami, JACS, **2012**, *134*, 13573;
K. Muto, J. Yamaguchi, D. G. Musaev, K. Itami, *Nat. Commun.* **2015**, *6*, 7508

Recent reaction developments in nickel catalyzed functional group interconversion

C-O; C-N and C-C Bond activations – decarbonylative transformations

decarbonylative C-Het bond formations decarbonylative C-C bond formations

Acc. Chem. Res. **2018**, *51*, 1185, JACS **2018**, *140*, 3724; CEJ **2018**, 24, 3608; Org. Lett. **2018**, *20*, 385; Org. Lett. **2017**, *19*, 4255; ACIE **2017**, *56*, 4282; Chem. Eur. J. **2016**, *22*, 16787; ACIE. **2016**, *55*, 11810, ACIE **2017**, *56*, 3972; CEJ. **2017**, *23*, 11771