

Tutorial Session – Frontiers in Organic Chemistry

Enhancing the Potential of Organocatalysis with Light

Paolo Melchiorre

ICREA Research Professor

Institute of Chemical Research of Catalonia (ICIQ)

Barcelona Institute of Science & Technology

Tarragona – SPAIN

pmelchiorre@iciq.es

Ischia Advanced School of Organic Chemistry | IASOC 21 Sept 2018

Photochemistry and Excited-State Reactivity

V. Balzani, P. Ceroni, A. Juris, in *Photochemistry and Photophysics*, Wiley-VCH, 2014 P. Klán, J. Jacob, in *Photochemistry of Organic Compounds*, John Wiley & Sons, 2010

B. List, R. A. Lerner, C. F. Barbas III, J. Am. Chem. Soc. 2000, 122, 2395-2396

Iminium ion catalyzed asymmetric Diels-Alder of enals

K. A. Ahrendt, C. J. Borths, D. W. C. MacMillan, J. Am. Chem. Soc. 2000, 122, 4243-4244

B. List, R. A. Lerner, C. F. Barbas III, J. Am. Chem. Soc. 2000, 122, 2395-2396

with E. Arceo, I. Jurberg, A. Alvarez Nature Chemistry, **2013**, *5*, 750-756

For a pertinent precedent, see: D. A. Nicewicz, D. W. C. MacMillan, Science 2008, 322, 77

Intramolecular S_N2 type Reaction

N. Vignola, B. List, J. Am. Chem. Soc. 2004, 126, 450-451

The Solution: Merging Photoredox- and Enamine-catalysis

D. A. Nicewicz, D. W. C. MacMillan, Science 2008, 322, 77

Merging Photoredox- and Amino-Catalysis

Vinylogous Reactivity in Radical Pathways

	Photocatalyst	time	conv. R'Br	ee
EtO ₂ C CO ₂ Et	Fluorescein	48 h	100	50 %
Br NO ₂	[Ru(bpy)₃]Cl₂	45 h	88	64 %
Br NO ₂	[Ru(bpy)₃]Cl₂	40 h	75	66 %
	[Ru(bpy)₃]Cl₂	14 h	100	64 %

Vinylogous Reactivity in Radical Pathways

Elena Arceo

The reaction works without any Photo-redox catalyst!

Expanding the Scope

Igor Jurberg

Elena Arceo

Photochemical Mechanism

EDA complexes and Charge Transfer theory

R. S. Mulliken, J. Phys. Chem. 1952, 56, 801

about Serendipity & Observations

visual observation

EDA Complex

For mechanistic studies (with Ana Bahamonde) J. Am. Chem. Soc. **2016**, 138, 8019–8030

an Alternative Path: Chain Mechanism

A quantum yield (Φ) of 25 was determined (λ = 450 nm)

for mechanistic studies (with Ana Bahamonde) J. Am. Chem. Soc. **2016**, 138, 8019–8030

the enamine weakly absorbs visible light

Direct Excitation of Enamines

Q 9

IC

Mattia Silvi

Direct Excitation of Enamines

Stern–Volmer quenching studies

Mattia Silvi

with M. Silvi, E. Arceo, I. Jurberg, C. Cassani J. Am. Chem. Soc. **2015**, 137, 6120-6123

K. A. Ahrendt, C. J. Borths, D. W. C. MacMillan, J. Am. Chem. Soc. 2000, 122, 4243-4244

HAT: Hydrogen Atom Transfer mechanism

Quaternary carbon stereocentre

David Bastida

For pertinent precedents on enantioselective catalytic radical conjugate additionsT. P. Yoon et al. J. Am. Chem. Soc. 2015, 137, 2452M. P. Sibi et al. J. Am. Chem. Soc. 2006, 128, 13346

Identifying the Problem

David Bastida

John Murphy

Mechanistic studies with Ana Bahamonde and John J. Murphy J. Am. Chem. Soc. 2017, 139, 4559–4567

David Bastida

John Murphy

with J.J. Murphy, D. Bastida, S. Paria, M. Fagnoni Nature **2016**, 532, 218–222

Results

with J.J. Murphy, D. Bastida, S. Paria, M. Fagnoni Nature **2016**, 532, 218–222

Results

Н

the Question...

SILANE

- ✓ Low reduction potentials ($E_{ox} = +1.4 1.7$ V)
- ✓ Can easily fragment realeasing free radicals
- ✓ Cheap, easy to synthesize, low toxicity

Mattia Silvi

For a pertinent precedent, see: Ohga, K.; Mariano, P. S. *J. Am. Chem. Soc.* **1982**, *104*, 617

Ph Excited Iminium Ion

Mattia Silvi

Charlie Verrier

Plausible explanation

TDS: dimethylthexylsilyl

with M. Silvi, C. Verrier, Y. Rey, L. Buzzetti Nature Chem. 2017, 9, 868-873

Yannick Rey

Proposed mechanism

Nature Chem. 2017, 9, 868-873

with M. Silvi, C. Verrier, Y. Rey, L. Buzzetti Nature Chem. 2017, 9, 868-873

Photochemistry of Iminium Ions

with Charlie Verrier, Nurtalya Alandini, Luca Buzzetti ACS Catal. 2018, 8, 1062–1066

For pertinent precedents:
J. C. Tellis, D. N. Primer, G. A. Molander, *Science* 2014, *345*, 433–436
K. Nakajima, S. Nojima, K. Sakata, Y. Nishibayashi, *ChemCatChem* 2016, 8, 1028–1032
G. A. Molander *et al.*, *ACS Catal.* 2016, *6*, 8004–8008

Asymmetric Organocatalytic Photo-Cascade

For a pertinent study, see: P. Mariano, *Tetrahedron* **1981** *37*, 3385-3395 Asymmetric Photocatalytic C-H Functionalization of Toluene

unpublished results

Mechanistic path

