

Transitioning Organic Synthesis to a Water World. Faster, Better, Cheaper AND Environmentally Responsible Chemistry

Comparisons: nature vs. organic chemistry

Bruce H. Lipshutz

Department of Chemistry & Biochemistry University of California Santa Barbara, CA 93106 USA lipshutz@chem.ucsb.edu

Ischia Advanced School of Organic Chemistry

Napoli, Italy

September 23, 2018

Making the switch to green chemistry...

"The medium is the message."

Looking Towards Nature as the Perfect Model

Enzymatic Biocatalysis...in Water

Three Two Worlds of Organic Chemistry

"Directed Evolution" in Micellar Catalysis New Nanomicelles as "Nanoreactors" in Water

Benign by design "designer" surfactants (available from Aldrich)

Applications of nanomicellar technology

chemistry in water at RT

Insight into TPGS-750-M: why does it work so well?

In collaboration with Prof. Martin Andersson Problem faced:

Applications of nanomicellar technology

chemistry in water at RT

catalyst

Buchwald-Hartwig aminations: from the green chemistry perspective

Environmentally responsible, sustainable synthetic chemistry

Pd-Catalyzed aminations in water: earlier work

Ruiz-Castillo, P.; Buchwald, S. L. Chem. Rev. 2016, 116, 12564.

CHEMISTRY **Green Chemistry** t-BuXPhos: a highly efficient ligand for Buchwald-Hartwig coupling in water* Cite this: Green Chem., 2014, 16, Patrick Wagner,^a Maud Bollenbach,^a Christelle Doebelin,^a Frédéric Bihel,^a Jean-Jacques Bourguignon,^a Christophe Salomé*^{a,b} and Martine Schmitt*^a

An efficient and versatile 'green' catalytic system for the Buchwald-Hartwig cross-coupling reaction in

water is reported. In an aqueous micellar medium, the combination of t-BuXPhos with [(cinnamyl)PdCl]₂ showed excellent performance for coupling arylbromides or chlorides with a large set of amines, amides, ureas and carbamates. The method is functional-group tolerant, proceeds smoothly (30 to 50 °C) and provides rapid access to the target compounds in good to excellent isolated yields. When applied to the synthesis of a known NaV1.8 modulator, this method led to a significant improvement of the E-factor in comparison with classical organic synthesis.

Amines via reductive amination

Current Organic Chemistry, 2015, 19, 1021-1049

Recent Advances in Reductive Amination Catalysis and Its Applications

Heshmatollah Alinezhad*, Hossein Yavari and Fatemeh Salehian

Faculty of Chemistry, University of Mazandaran, Babolsar, Iran

1021

Abstract: Reductive amination is considered as the most popular and established approaches which provide rapid access to different types of amines, important intermediates for the production of natural products and organic compounds, and also synthesis of essential precursors needed for drug development in chemical and biological systems. The current review discusses the progress of reductive amination catalysis from 2008 to the latest one. Also, efficacy of different reagents including organocatalysts, asymmetric and symmetric complexes of Ir, Rh, and Ru, boron, silicon reagents for enantio-, chemo-, and diastereoselective reactions is illustrated under various reaction conditions with a focus on the yield of the obtained products. Biocatalytic reductive amination for the synthesis of chiral amines and also utility of this reaction for the development of bioactive molecules are also briefly described.

Keywords: Boron reagents, organocatalyst, reductive amination, silicon reagent, transfer hydrogenation, transition metal

1. INTRODUCTION

PAPER

CrossMark

Received 9th May 2014

Accepted 1st July 2014

www.rsc.org/greenchem

DOI: 10.1039/c4gc00853g

4170

Amines and their derivatives are present in various significant naturally occurring bioactive molecules such as peptides, nucleic acids, alkaloids and so on [1]. They are known to have widespread applications as intermediates for the synthesis of bulk drugs, fertilizers, dves, resins, explosives, fine chemicals, solvents, agrochemicals, and synthetic polymers as well as the production of detergents and pesticides. Furthermore, optically active amines have found numerous broad applications in asymmetric synthesis such as chiral auxiliaries, catalysts, and resolving agents,

Because of their significance, there are many different strategies for the synthesis of amines which include: (i) Reduction of functional groups containing nitrogen such as nitro, cyano, azide, and carboxamide derivatives; (ii) Alkylation of ammonia as well as primary or secondary amines. Alkyl halides or sulfonates could be applied as alkylating agents in these reactions; yet, commonlyencountered overalkylation of ammonia and primary amines occurs

these procedures, reductive amination is recognized as the most practical and widespread strategy in the production of various types of amines. Treatment of carbonyl compounds with ammonia and primary or secondary amines in the presence of a reductant for providing different kinds of amines is referred to as reductive amina tion of carbonyl compounds (Scheme 1) Reductive amination (RA) was firstly described in the early days of the twentieth century by Mignonac. Since then, it has been widely used for the preparation of different types of amines. The initial step of the reaction is the formation of addition product (carbinol amine) which, under controlled appropriate reaction conditions, loses water to offer imine or iminium ion b, reduction of b produces the amine product.

Reductive amination reaction is considered direct when carbonyl compound, amine, and suitable reducing agents are all mixed in a single one-pot operation without previous formation of the intermediates of imine or iminium salt. However, in stepwise or indirect reaction, the intermediates (imine, iminium, or enamine)

Pd-Catalyzed aminations in water: earlier work

Schmitt, M. et al. Green Chem. 2014, 16, 4170.

Recent Advances in Reductive Amination Catalysis and Its Applications

Current Ornanic Chemistry 2015, 19, 1021-1049

Heshmatollah Alinezhad*, Hossein Yavari and Fatemeh Salehiar

Faculty of Chemistry, University of Mazandaran, Babolsar, Iran

Abstract: Reductive as tion is considered as the mos ccess to different types of amines, important intern iates for the production of natural products and org apounds, and also synthesis of essential precursors needed for drug development in chemical and biological sy ems. The current review discusses the progress of reductive amination catalysis from 2008 to the latest one. Als boron, silicon reagents for enantio-, chemo-, and diastereoselective reactions is illustrated under various r conditions with a focus on the yield of the obtained products. Biocatalytic reductive amination for the synthesis of chiral amines and also utility of this reaction for the develo

Keywords: Boron reagents, organocatalyst, reductive amination, silicon reagent, transfer hydrogenation, transition metal.

1 INTRODUCTION

Amines and their derivatives are present in various significant naturally occurring bioactive molecules such as peptides, nucleic acids, alkaloids and so on [1]. They are known to have widespread applications as intermediates for the synthesis of bulk drugs, fertilizers, dyes, resins, explosives, fine chemicals, solvents, agrochemicals, and synthetic polymers as well as the production of detergents and pesticides. Furthermore, optically active amines have found numerous broad applications in asymmetric synthesis such as chiral auxiliaries, catalysts, and resolving agents.

Because of their significance, there are many different strategies for the synthesis of amines which include: (i) Reduction of functional groups containing nitrogen such as nitro, cyano, azide, and carboxamide derivatives; (ii) Alkylation of ammonia as well as primary or secondary amines. Alkyl halides or sulfonates could be applied as alkylating agents in these reactions; yet, commonlyncountered overalkylation of ammonia and primary amines occurs as an unwanted and problematic reaction; (iii) Gabriel synthesis and (iv) Reductive amination of carbonyl compounds. Access of

these procedures, reductive amination is recognized as the most practical and widespread strategy in the production of various types of amines. Treatment of carbonyl compounds with ammonia and primary or secondary amines in the presence of a reductant for pro-viding different kinds of amines is referred to as reductive amination of carbonyl compounds (Scheme 1). Reductive amination (RA) was firstly described in the early days of the twentieth century by Mignonac. Since then, it has been widely used for the preparation of different types of amines. The initial step of the reaction is the formation of addition product (carbinol amine) which, under controlled appropriate reaction conditions, loses water to offer imine or iminium ion b, reduction of b produces the amine product.

bonyl compound, amine, and suitable reducing agents are all mixed in a single one-pot operation without previous formation of the intermediates of imine or iminium salt. However, in stepwise or indirect reaction, the intermediates (imine, iminium, or enamine) are formed in advance followed by reduction in a separate step [2]. tive amination strategy, the imine

Reductive amination reaction is considered direct when car-

Article pubs.acs.org/JACS Cite This: J. Am. Chem. Soc. 2018, 140, 7292-7300

Main-Group-Catalyzed Reductive Alkylation of Multiply Substituted Amines with Aldehydes Using H₂

Yoichi Hoshimoto, **** Takuya Kinoshita, Sunit Hazra, Masato Ohashi, and Sensuke Ogoshi

^{*}Department of Applied Chemistry, Faculty of Engineering and ^{*}Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

Supporting Information

ABSTRACT: Given the growing demand for green and sustainable chemical processes, the catalytic reductive alkylation of amines with maingroup catalysts of low toxicity and molecular hydrogen as the reductant would be an ideal method to functionalize amines. However, such a process remains challenging. Herein, a novel reductive alkylation system using H₂ is presented, which proceeds via a tandem reaction that involves the B(2,6-Cl2C6H1)(p-HC6F4)2-catalyzed formation of an imine and the subsequent hydrogenation of this imine catalyzed by a frustrated Lewis pair (FLP). Main-group catalysis: No harmful/toxic metals This reductive alkylation reaction generates H2O as the sole byproduct and directly functionalizes amines that bear a remarkably wide range of

H₃ as reductant: Waste-minimized process

substituents including carboxyl, hydroxyl, additional amino, primary amide, and primary sulfonamide groups. The synthesis of isoindolinones and aminophthalic anhydrides has also been achieved by a one-pot process that consists of a combination of the present reductive alkylation with an intramolecular amidation and intramolecular dehydration reactions, respectively. The reaction showed a zeroth-order and a first-order dependence on the concentration of an imine intermediate and B(2,6-Cl₂C₆H₃)(p-HC₆F₄)₂, respectively. In addition, the reaction progress was significantly affected by the concentration of H₂. These results suggest a possible mechanism in which the heterolysis of H2 is facilitated by the FLP comprising THF and B(2,6-Cl₂C₆H₁)(p-HC₆F₄)₂

Journal of the American Chemical Society

Cl₂C₆H₃)(p-HC₆F₄)₂ in the FLP-catalyzed hydrogenation of carbonyl compounds."

In the case of path A, the FLP comprising THF and B activates H₂ to afford [THF-H][H-B], and the [THF-H]" species continuously activates Im to form an iminium intermediate Y. A similar activation of aldehydes by [THF-H]" has been theoretically studied by Pápai and Soos et al." Finally, a hydride transfer from [H-B] to the ininium moiety in Y affords the reductively alkylated product with the concomitant regeneration of the FLP catalyst.

On the other hand, in the case of path B, the FLP comprising Im and B activates H₂ to afford [Im-H][H-B], which would subsequently be solvated by THF to form intermediate Y. This type of H₂ activation has been proposed for FLP-catalyzed hydrogenations in noncoordinating solvents such as toluene and CHACL na.sha

In order to clarify the reaction mechanism, detailed mechanistic studies were carried out (Figure 3). First, the reaction between Ia and 2a was monitored under the conditions shown in Figure 3a in order to confirm the catalysis by B(2,6-Cl₂C₆H₃)(p-HC₆F₄)₂ during the formation of imine A. In the presence of both 4 Å MS and B(2,6-Cl₂C₀H₂)(p-HCsF4); (S mol %), A was obtained in 83% yield within S min, whereas almost no reaction was observed in the absence of B(2,6-Cl₂C₆H₄)(p-HC₆F₄)₂, most likely due to the insufficient nucleophilicity of 2a toward 1a.10 It should be noted that the reaction was pressurized with H2 within 10 min after the preparation of the THF solution of 1, 2, B(2,6-Cl₂C₀H₃)(p-HCoF4)2, and 4 Å MS. Thus, the B(2,6-Cl2CoH2)(p-HCoF4)2catalyzed formation of the imines should be operative under these conditions.

evaluated by varying the pressure of H₂ from 5 to 40 atm under the conditions shown in Figure 3f.

All these results demonstrate that (i) B(2,6-Cl₂C₀H₃)(p-HC₆F₄)₂ is involved in both catalytic cycles of the present tandem processes and (ii) the rate-limiting heterolytic cleavage of H₂ would be mediated by the FLP comprising THF and B(2,6-Cl₂C₆H₃)(p-HC₆F₄)₂₀ given that the reaction rate depends on the H2 pressure. Path A in Figure 2 is likely to occur for the reaction of 1a, 2a, and H2 in the presence of B(2,6-Cl₁C_oH₁)(p-HC_oF₄)₁ in THF.

CONCLUSION

In summary, a novel reductive alkylation system has been developed for the direct functionalization of amines that bear a remarkably wide range of functional groups, which include carboxyl, hydroxyl, and additional amino groups. Thus, a variety of amino acids (or their derivatives) were alkylated in good to excellent yield. The reaction proceeds via tandem processes comprising the B(2,6-Cl,C,H1)(p-HC,F4),-catalyzed formation of imines and their subsequent hydrogenation catalyzed by a frustrated Lewis pair (FLP). The results of our mechanistic studies support the proposed mechanism: (i) the formation of the imine is significantly accelerated in the presence of B(2,6-Cl₂C₆H₃)(p-HC₆F₄); and MS and (ii) the rate-limiting heterolytic cleavage of H₂ should be mediated by the FLP comprising THF and B(2,6-CI₃C₆H₃)(p-HC₆F₄)₃. Moreover, H2 was used as the reductant, which generates H2O as the sole byproduct. In their entirely, the aforementioned results emonstrate that the present catalytic system represents an environmentally benge, atom-efficient, and practical route to inctionalize multiply substituted amines.

Ogoshi, et al. JACS, 2018

Article

ppm metal catalysis...Suzuki-Miyaura couplings

This is an open access article published under an ACS AuthorChoice <u>Uprates</u> , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.	
	Persp
pub	6.865.

Analysis of Past and Present Synthetic Methodologies on Medicinal Chemistry: Where Have All the New Reactions Gone?

Miniperspective

Dean G. Brown*1 and Jonas Boström

Medicinal Chemistry

[†]AstraZeneca Neurosciences, IMED Biotech Unit, AstraZeneca R&D Boston, 141 Portland Street, Cambridge, Massachusetts 02139 United States

[†]CVMD Innovative Medicines, IMED Biotech Unit, AstraZeneca, Mölndal SE-431 83, Sweder

6 Supporting Information

ABSTRACT: An analysis of chemical reactions used in current medicinal chemistry (2014), three decides sog (1984), and in natural product total symbols has been conducted. The analysis revealed that of the current most frequently used symbolic reactions, none were discovered within the past 20 years and only two in the 1980s and 1990s. (Suruki-Mynama and Bachwale) Hartwig). This suggests an inherent high bar of impact for new symthetic reactions in drug discovery. The most frequently used reactions were amide bond formation, Suzuki-Mynamz coupling, and S_AAr reactions, most likely due to commercial availability of reagents, high chemoselectivity, and a pressure on delavery. We show that these practices result in overpopulation of certain types of molecular shapes to the exclusion of others using simple PMI plots. We hope that these results will help catalyze improvements in tregration of new synthetic methodologies as well as new library design.

Pd-catalyzed Suzuki-Miyaura couplings: with Pd at *ppm levels*

Limited set of reactions

leads to ...

Perspective pubs.acs.org/acscatalysis

2-Aminobiphenyl Palladacycles: The "Most Powerful" Precatalysts in C-C and C-Heteroatom Cross-Couplings

Alexandre Bruneau, Maxime Roche, Mouad Alami,* and Samir Messaoudi*

Laboratoire de Chimie Thérapeutique, Equipe Labellisée Ligue Contre Le Cancer, LabEx LERMIT, Faculté de Pharmacie, University Paris-Sud, CNRS, BioCIS-UMR 8076, 5 rue J.-B. Clément, Châtenay-Malabry, F-92296, France

ABSTRACT: New approaches to the Pd-catalysis employing palladacycle precatalysts have been recently developed. Breakthroughs in this area using 2aminobiphenyl palladacycle precatalysts are highlighted. High reactivity and selectivity are achieved for the C-C and C-heteroatom bond formation under mild reaction conditions.

KEYWORDS: catalysis, palladacycles, precatalysts, C-C and C-heteroatom bonds formation, cross-couplings

ACS Catalysis 2015, 5, 1386.

When Does Organic Chemistry Follow Nature's Lead and "Make the Switch"?

Bruce H. Lipshutz*0

Department of Chemistry & Biochemistry University of California, Santa Barbara, California 93106, United States

ABSTRACT: The case is made for transitioning organic chemistry from a developed discipline that remains highly dependent upon organic solvents to one that will be sustainable, based on water as the reaction medium. Processes in hand that today achieve the same bond constructions characteristic of traditional organic synthesis, but can be accomplished under environmentally responsible conditions, are discussed as representative of the potential that lies ahead.

