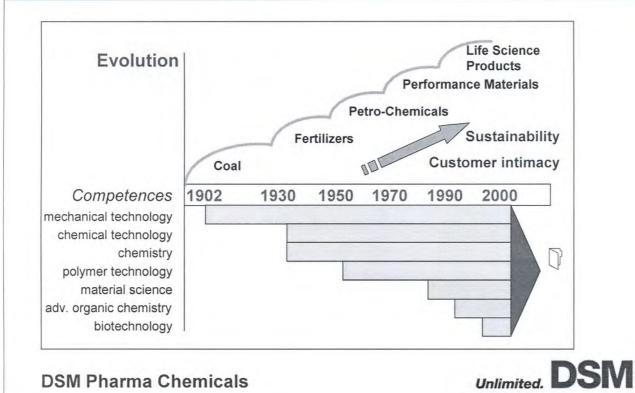


The Combinatorial Approach to Asymmetric Hydrogenation.

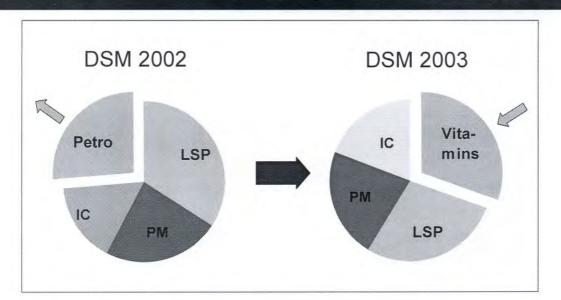
Johannes G. de Vries

DSM Pharma Chemicals

and


University of Groningen

IASOC 2004, Ischia



- 1. DSM. A century of changes.
- 2. Homogeneous catalysis for fine chemicals
- 3. HTE approach; ligand libraries
- 4. MonoPhos[™] ligands for asymmetric hydrogenation
- 5. Instant Ligand Libraries
- 6. Mechanism
- 7. The wedding between homogeneous catalysis & biocatalysis

Strategic impact Petrochem & Roche deals

Total sales ~ € 7 bn Specialties from ~ 50% to > 80%

DSM Pharma Chemicals

Important technologies

- Asymmetric hydrogenation (olefins, ketones, imines, enamides)
- Asymmetric transfer hydrogenation (ketones)
- · Asymmetric epoxidation
- · Aromatic substitution
 - ·Heck
 - ·Suzuki/Negishi
 - Sonogashira
 - Amination
 - Cyanation
- •CO chemistry (hydroformylation, carbonylation, amidocarbonylation)
- ·Isomerisation and racemisation
- Oxidation
 - · benzylic and allylic oxidation
 - · alcohols to aldehydes or acids
 - · olefins to epoxides

DSM Pharma Chemicals

Asymmetric Hydrogenation

6

- Nobel prize winning chemistry
- · Several hundred ligands known
- Many thousands examples on lab-scale

Till about 5 years ago the use of this technology for the production of fine chemicals was scarce.

Why?

Reviews

H.U. Blaser, F. Spindler and M. Studer, Appl. Catal.: A General, 2001, 221, 119.

J.G. de Vries in Encyclopedia of Catalysis, I. Horvath, ed. 2003, Vol 3, p 295.

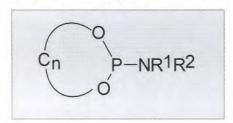
DSM Pharma Chemicals

- Time to market constraints in pharmaceuticals production leads to very short development time
- 2. Competing technologies
- 3. Cost
 - Cost of metal (Rh or Ru)
 - · Cost of ligand
 - Activity of the catalyst.
 - Stability of the catalyst
 - Recovery or recyclability
- 4. Availability of catalysts on short notice
- Patents and high cost of licensing
- 6. Reliability, real or perceived

Combinatorial / HTE approach to asymmetric hydrogenation

1

Goal: Find catalytic solution for customer requests within 3 weeks


Requirements:

- Hardware
 - Endeavor (8 high pressure reactors)
 - Two proprietary reactors for high pressure (96 and 28 vessels)
- HTE Analysis
 - · GC
 - HPLC (including chiral HPLC)
 - Flow-NMR
- Libraries of ligands

Review: J.G. de Vries and A.H.M. de Vries, Eur. J. Org. Chem., 2003, 799-811.

Review Ligand libraries: C. Gennari, U. Piarulli, Chem. Rev. 2003, 103, 3071.

- · Libraries of phosphine ligands are not easy to prepare.
- Phosphoramidites on the contrary are easily prepared in 2 steps:

- · Diversity from both diol and amine part.
- · Chirality from BINOL or TADDOL skeleton or chiral amine.
- Very successful in copper catalysed asymmetric 1,4 addition of Et₂Zn to cyclic enones (B. Feringa et al, RUG)
- · Not known for asymmetric hydrogenation!

Unlimited. DSM

Easy synthesis of phosphoramidites

11

$$* \stackrel{\mathsf{OH}}{\mathsf{OH}} + \mathsf{PCI}_3 \longrightarrow * \stackrel{\mathsf{O}}{\mathsf{O}} \mathsf{P-CI} \qquad \mathsf{RR'NH/Base}$$

$$\mathsf{RR'NH} + \mathsf{PCI}_3 \longrightarrow \stackrel{\mathsf{CI}}{\mathsf{CI}} \mathsf{P-N}_{\mathsf{R'}}^{\mathsf{R}} \longrightarrow * \stackrel{\mathsf{OH}}{\mathsf{OH}} \mathsf{NR'}$$

$$* \stackrel{\mathsf{OH}}{\mathsf{OH}} + \mathsf{HMPT} \longrightarrow * \stackrel{\mathsf{O}}{\mathsf{O}} \mathsf{P-N(Me)_2} \qquad \mathsf{RR'NH}$$

$$* \stackrel{\mathsf{OH}}{\mathsf{OH}} + \mathsf{HMPT} \longrightarrow * \stackrel{\mathsf{O}}{\mathsf{O}} \mathsf{P-N(Me)_2} \qquad \mathsf{RR'NH}$$

DSM Pharma Chemicals

Entry	Solvent	Temp	e.e.
1.	CH₃OH	RT	70%
2.	CH ₂ Cl ₂	RT	95%
3.	CH ₂ Cl ₂	5°C	97%
4.	THF	RT	93%
5.	Acetone	RT	92%
6.	ProcH ₂ CH ₂ OH	RT	77%

Unlimited. DSM

12

Asymmetric hydrogenations with MonoPhos™

R CO₂R' Rh(COD)₂BF₄, 2.2 eq. of MonoPhos R CO₂R' Solvent, RT, H₂

Entry	R	R'	Solvent	e.e. (RT)	e.e (0°C)
1.	Ph	Me	CH ₂ Cl ₂	95%	97%
2.	Ph	Н	EtOAc	97%	
3.	Н	Me	EtOAc		>99%
4.	Н	Н	EtOAc	>99%	

M. van den Berg, A.J. Minnaard, E.P. Schudde, J. van Esch, A.H.M. de Vries, J.G. de Vries and B.L. Feringa, *J.Am.Chem.Soc.*, **2000**, *122*, 11539. WO 02/04466

DSM Pharma Chemicals

	R	R	Solvent	e.e. (R	T) e.e. (0 °C)
1.	Н	Me	CH ₂ Cl ₂	95%	97%
2.	3-MeO	Н	CH ₂ Cl ₂	97%	
3.	4- Ph	Me	CH ₂ Cl ₂	95%	
4.	4-OAc, 3-OMe	Me	EtOAc	94%	98%
5.	4-Ac	Me	CH ₂ Cl ₂	99%	

M. van den Berg et al., Adv. Synth. Catal. 2003, 345, 308-322.

DSM Pharma Chemicals

Unlimited. DSM

Advantages of MonoPhos[™] hydrogenations

14

- MonoPhos can be prepared in a single step from commercially available BINOL (Compare with DUPHOS: 6 steps).
- MonoPhos is an order of magnitude cheaper than currently available bisphosphines.
- The hydrogenation rate can be increased by increasing the H₂ pressure without loss in enantioselectivity!
- At S/C ratio of 2000 full conversion in 2 h at 10 bar.
- · Method of choice for asymmetric olefin hydrogenation.
- · Large library of ligands available.

H. Bernsmann et al., submitted to JOC

DSM Pharma Chemicals

Unlimited. DSM

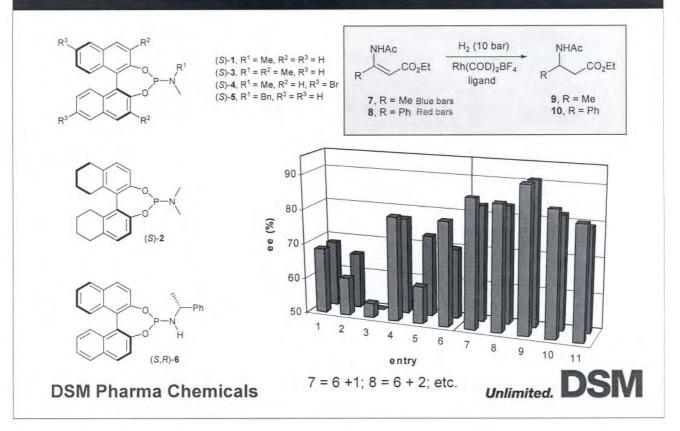
β -Amino Acids by Asymmetric Hydrogenation

- Synthesis of precursors: Z/E mixtures with predominantly Z
- Asymmetric hydrogenation of E is facile.
- Asymmetric hydrogenation of Z is difficult. For R = aryl so far only a few successful catalyst systems known: Ru-BINAPO, Tangphos (X. Zhang et al.)
- · Two strategies can be developed:
 - find good ligand for Z
 - synthesis of only E
 (See: D. Heller et al. Angew. Chem. Int. Ed. 2003, 42, 913)

DSM Pharma Chemicals

Substrate	Ligand	Solvent	e.e.
<i>E</i> - R = CH ₃	MonoPhos	CH ₂ Cl ₂	95%
E- R = CH ₃	1	CH ₂ Cl ₂	99%
Z- R = CH ₃	2	<i>i</i> PrOH	95%
<i>Z</i> - R = Ph	2	<i>i</i> PrOH	92%

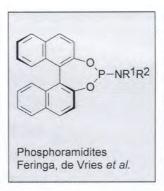
D. Peña et al, J. Am. Chem. Soc., **2002**, 124, 14552-3.

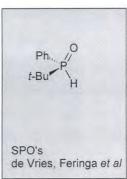

Unlimited. DSM

Cocktails anyone?

15

What happens if you mix ligands?

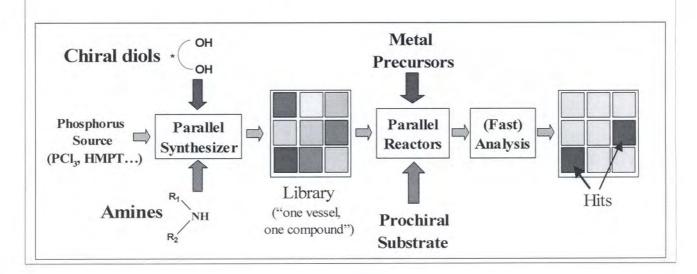

$$RhL^1L^1$$
 \longrightarrow RhL^2L^2



Combinatorial catalysis.....

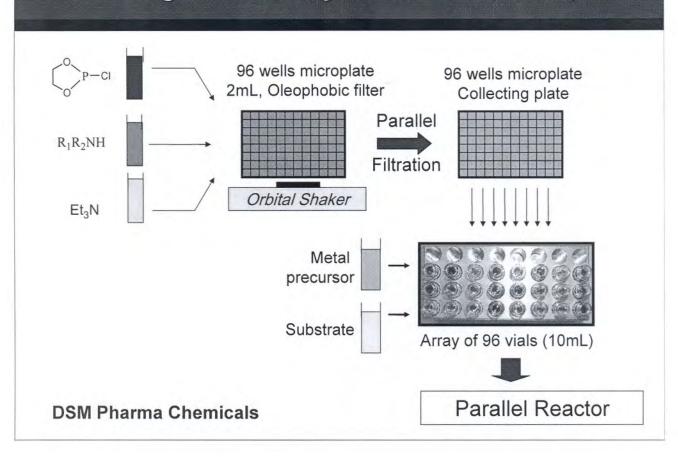
20

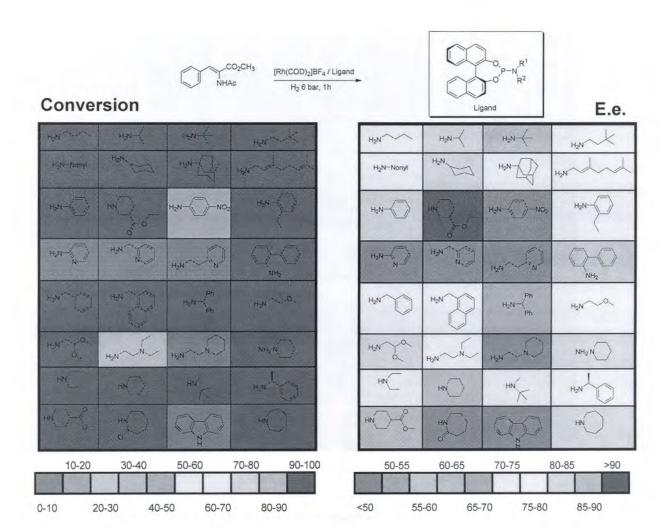
- · ...works! (D. Peña et al. Org. Biomol. Chem., 2003, 1, 1087.).
- From NMR: Almost exclusive formation of mixed complex in case of e.e. enhancement.
- Most tested combinations gave lower enantioselectivity than the homo-catalysts.
- Significantly increases the scope of asymmetric hydrogenation.
- Also shown to work with monodentate phosphites. (M.Reetz et al. Angew. Chem. Int. Ed. 2003, 42, 790.)

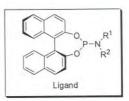


- · They can all be synthesized in 1-2 steps
- Other applications besides hydrogenation: Asymmetric Heck, hydroarylation, hydrosilylation, allylic substitution.

Unlimited. DSM


The combinatorial approach to ligand finding


- 22
- So far ligand libraries have been made manually. Each ligand synthesised and purified separately.
- · Can we make ligands in a robot?
- · What about purification?


96 New ligands in 1 day, tested the next day

 $\begin{array}{c} \text{NHAc} \\ \text{CO}_2\text{CH}_3 \end{array} \qquad \begin{array}{c} [\text{Rh}(\text{COD})_2]\text{BF}_4 \, / \, \text{Ligand} \\ \\ \text{H}_2 \, 6 \, \text{bar}, \, 1h \end{array}$

Conversion

E.e.

H ₂ N	H ₂ N (H ₂ N-	#N/\X
H ₂ N-Nonyl	HA	H ₂ N-	Hanna
H ₂ N-	HN	H ₂ N NO ₂	H ₂ N-
H ₂ N (N)	H ₂ N N.	HAN N	NH ₂
H ₂ N \	H ₂ N	Ph H ₂ N−√ Ph	H ₂ N ~ O ~
H ₂ N \ O.	H ₂ N \ N	H _N (N)	NH ₂ ·N
HN	HN	HN	H ₂ N
HN	HN		HN

			E.0.
H ₂ N ^	H ₂ N (H ₂ N-	H ₂ N~
H ₂ N-Nonyl	H ₂ N	H ₂ N-	H ₂ N
H ₂ N-	HN	H ₂ N-NO ₂	H ₂ N—
H ₂ N-N	H ₂ N N,	H _M N N	NH ₂
H³N \	H ₂ N	H ₂ N—Ph	H ₂ N ~ 0 ~
H ₂ N \ 0\	H ₂ N N	HAN NO	NH ₂ ·N
HN	HN	HN	H ₂ N \
HN_>-0	HN	00	HN

	10-20	30-	40 50	-60	70-80	90-100
0-10	2	0-30	40-50	60-70)	80-90

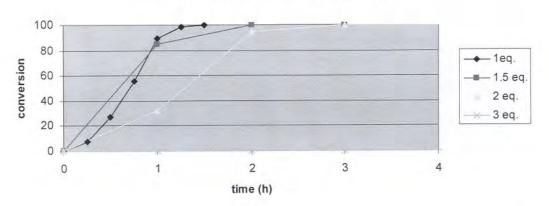
Comparison

26

	Purified	ligands	Library ligands	
Ligand	Conv. (%)	Ee (%)	Conv (%)	Ee (%)
NEt ₂	8	46	11	41
Piperidine	11	55	7	43
NH-α- MeBenz	96	94	51	88
NHiPr	100	95	95	92

- This HTE approach enables a very fast synthesis of a wide range of phosphoramidites and their screening in asymmetric olefin hydrogenation of
- Also less easy accessible N-H ligands can be tested.
- E.e's are slightly lower than for the conventional reaction.
 However, the order is representative.
- Can also be applied to other monodentate ligand fanilies
- Can also be applied in other catalytic chemistry (C-C bond formation)

L. Lefort, J.A.F. Boogers, A.H.M. de Vries and J.G. de Vries, Org Lett, 2004

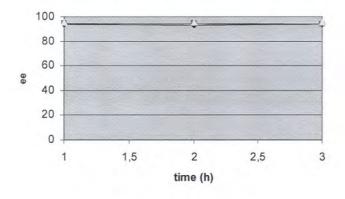

DSM Pharma Chemicals

Unlimited. DSM

Effect of Ligand/Rh ratio

21

Rate dependence on Monophos/Rh ratio

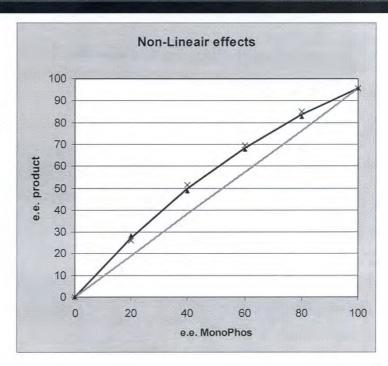

DSM Pharma Chemicals

Effect of Ligand/Rh ratio

29

$$\begin{array}{c|c} & & & \\ \hline & & \\ & & \\ \hline & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$$

E.e dependence on MonoPhos/Rh ratio


DSM Pharma Chemicals

Unlimited. DSM

How many ligands on rhodium

30

- •Asymmetric Amplification!
- More than 1 ligand on rhodium?

DSM Pharma Chemicals

If the "racemic" catalyst is slower than the enantiopure catalysts the e.e. will be higher than expected; positive asymmetric amplification.

If the "racemic" catalyst is faster than the enantiopure catalysts: e.e. will be lower than expected; negative asymmetric amplification.


This experiment proves the existence of RhL_2 , But.....

DSM Pharma Chemicals

Unlimited. DSM

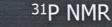
Possible equilibria in solution

32

- ..it does not rule out the existence of catalytically active RhL.
- •NMR, MS and kinetic studies needed.

DSM Pharma Chemicals

Experiment with 5 mol% Rh followed over time with ES-MS (cationic mode):

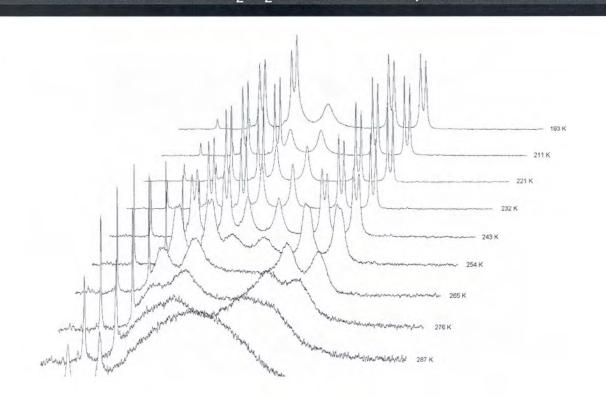

After 30 min: RhL₂(nbd), RhL₂(Substrate), RhL₃, RhL₃(Substrate)

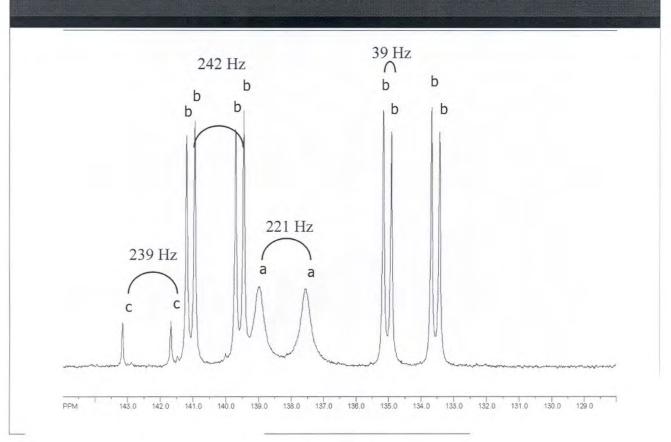
After 60 min: RhL₂(nbd), RhL₂(Substrate), RhL₃, RhL₄

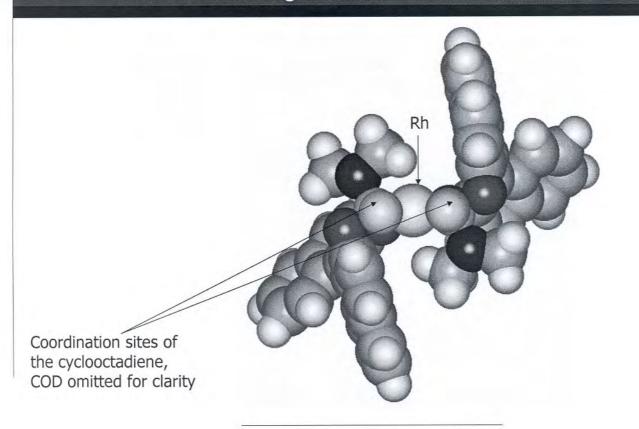
After 120 min: RhL2 (Substrate), RhL3, RhL4

Conclusions:

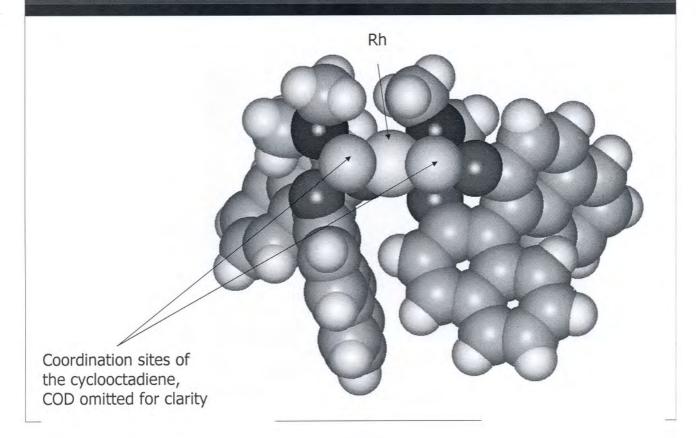
- ·No RhL derived complexes found
- •RhL3 and RhL4 cannot lead to products
- From results with mixtures of ligands: Only RhL₂ (not RhL) is an active catalyst!
- A large part of the rhodium is tied up in inproductive complexes.


Complex made from Rh(COD)₂BF₄ + 2 MonoPhos; slowly added


DSM Pharma Chemicals



Rh(MonoPhos)₂(COD)BF₄ 31P NMR in CD₂Cl₂ at various temperatures


^{31}P NMR Rh(MonoPhos) $_2$ (COD)BF $_4$ in CD $_2$ CI $_2$ at 211K

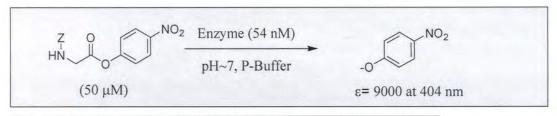
complex 'b' of Rh(MonoPhos)₂(COD)BF₄ is presumed to have the following structure

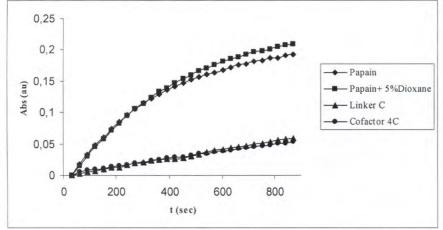
5

- Transition metal catalysed reactions very good for:
 - Hydrogenation
 - · C-C bond formation
 - Oxidation
- Enzymes are very good in:
 - · Hydrolytic reactions
 - · Chiral induction
 - · Enormous diversity readily available in large numbers!
- · Can we wed the best properties of both?
- Prior art: Whitesides and Ward (biotin linked catalysed bound to Avidin)

Artificial co-factors

7

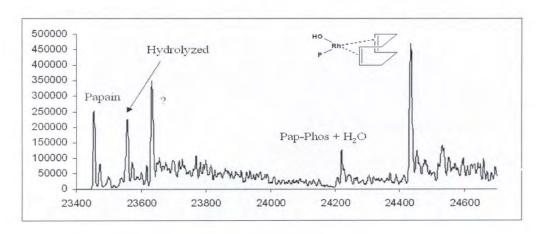

- Combine homogeneous catalysts that are good in hydrogenation and hydroformylation with an enzyme!
- Enzyme-Ligand-Metal
- Unfavourable weight ratio demands highly active catalyst
- Catalyst needs to be stable in aqueous environment
- Attachment at single position in enzyme for reproducibility.
- Start: Papain plus rhodium/phosphite complexes
- Enzyme-S-linker-O-P(OR)₂Rh-(COD)BF₄


Unlimited. DSM

Selective binding of ligand to enzyme on Cys-SH

9

DSM Pharma Chemicals


Unlimited. **DSM**

Mass Spectroscopy

11

After treatment of the ligated enzyme with [Rh(COD)₂]BF₄ and purification only a single Rh is bound to the enzyme!

ESI-MS

DSM Pharma Chemicals

Modified enzyme is a good hydrogenation catalyst!

12

- Product N-Ac-Ala-OH is racemic
- Native papain reacted with Rh-precursor and purified in the same manner shows no reactivity.
- · Next step: other enzymes and substrates.

Lavinia Panella, unpublished results

DSM Pharma Chemicals

Conclusions

13

- Monodentate phosphoramidites are excellent ligands for enantioselective olefin hydrogenation.
- Monophos is at least an order of magnitude cheaper than existing bisphosphine ligands.
- A library of 96 phosphoramidite ligands can be made in a single day and screened in catalysis the next day.
- Monophos[™] and other phosphoramidites are available in research quantities via STREM
- Combination of transition metal catalysts with enzymes is a promising new field.

DSM-Geleen

André de Vries

Jeroen Boogers

Charlotte Willans

Laurent Lefort

Sjoerd van de Wal

Math Boesten

University of Groningen

Michel vd Berg

Adri Minnaard

Ben L. Feringa

Diego Peña

Lavinia Panella

Dick Janssen

Marco Fraaije

IFOK

Detlef Heller

Hans-JG.Vries-de@dsm.com

Financial support: DSM, University of Groningen, Dutch Science Foundation Combichem program, EU (RTN Network Combichem)