Claudio Trombini

UNIVERSITÀ DI BOLOGNA DIPARTIMENTO DI CHIMICA "G. CIAMICIAN"

Recent Developments in the Chemistry of Functionalized Allylic Organometallics

Oxy-substituted Allylic Organometallic Compounds: Metallotropic Equilibria

Lithiated Allyl Ethers

Evans, D. A.; Andrews, G. C.; Buckwalter, B. J. Am. Chem. Soc. 1974, 96, 5560.

Lithiated Allyl Ethers as Precursors of 3-Alkoxyallyl Organometals

Examples: $M = InCl_3$, $ZnBr_2$, Et_3AI , L_3TiCI , L_2BX , L_3SnCI , etc.

Dieter HOPPE, Münster, http://www.uni-muenster.de/Chemie.oc/research/hop/hoppe.htm

Alkoxyallylation of carbonyl compounds with RO-CH=CH-CH₂M Complexes: Simple Diastereoselection

Diastereoselective complexes (*e.g.*, M = B)

- metallotropic shift much slower than the nucleophilic addition reaction

- η^1 -E- γ and η^1 -Z- γ display a stereodivergent reactivity (e.g. Zimmermann-Traxler rationale)

Z-3-Alkoxyallyl Boranes

Ramachandran, P. V.; Reddy, M. V. R.; Brown, H. C. Pure Appl. Chem. 2003, 75, 1263.

Barrett, A. G. M. et al, J. Org. Chem. 2000, 65, 6508.

Zhang, Q.; Lu, H.; Richard, C.; Curran, D. P. J. Am. Chem. Soc. 2004, 126, 36.

Carter, K. D.; Panek, J. S. Org. Lett. 2004, 6, 55.

Herbimycin A

Stereoselective approaches to *E* and *Z*-3-Alkoxyallyl Boronates

Alkoxyallylation of carbonyl compounds with RO-CH=CH-CH₂M Complexes: Diastereoconvergent complexes (*e.g.*, M = Sn)

- Open-chain (e.g. anti periplanar) TS's involved

Keck, G. E.; Abbott, D. E.; Wiley, M. R. *Tetrahedron Lett.* **1987**, *28*, 139. Koreeda,, M.; Tanaka, Y. *Tetrahedron Lett.* **1987**, *28*, 143.

Micalizio, G. C.; Pinchuk, A. N.; Roush, W. R. J. Org. Chem. 2000, 65, 8730.

Marshall, J. A.; Garofalo, A. W.; Hinkle, K. W. Org. Synth. 2000, 77, 98.

Synthetic applications of Z 3-alkoxyallyl stannanes

Marshall, J. A.; Schaaf, G.; Nolting, A. Org. Lett. 2005, 7, 5331.

3-Alkoxyallyl stannane route to marine polycyclic ethers: intramolecular allylation

Kadota, I.; Ueno, H.; Sato, Y.; Yamamoto, Y. *Tetrahedron Lett.* **2006**, *47*, 89. Kadota, I.; Yamamoto, Y. *Acc. Chem. Res.* **2005**, *38*, 423.

Kadota, I.; Takamura, H.; Nishii, H.; Yamamoto, Y. J. Am. Chem. Soc. 2005, 127, 9246.

Alkoxyallylation of carbonyl compounds with RO-CH=CH-CH₂M Complexes:

Diastereoconvergent complexes (*e.g.*, M = Ti)

- fast metallotropic fluxionality, cyclic TS's

Chiral 3-Aryloxyallyl Titanium Complexes

Hafner, A.; Duthaler, R. O.; Marti, R.; Rihs, G.; Rothe-Streit, P.; Schwarzenbach, F. J. Am. Chem. Soc. **1992**, *114*, 2321.

Fürstner, A.; Müller, C. Chem. Commun. 2005, 5583.

Chiral 3-Aryloxyallyl Titanium Complexes

Castaldi, D.; Caggiano, L.; Panigada, L.; Sharon, O.; Costa, A. M.; Gennari, C. *Angew. Chem. Int. Ed. Eng.* **2005**, *44*, 588.

New methodologies for the hydroxyallylation reaction, under Barbier/Grignard conditions

• Searching for substrates, suitable for the oxidative addition to low valent metals

Co(I)

Cobalt(I) Oxidative Addition to Allyl Acetate

P. Gomes, C. Gosmini, J. Périchon Synthesis 2003, 1909

Does Co(I) insert here, as in the case of allyl acetate?

The metallotropic shift

The insertion of Co(I) into the lowest minima

$$\eta^1 - \alpha$$

$$\eta^3$$
 – anti

 $\Delta E = 0$ Kcal/mol

 $\Delta E = 1,3 \text{ Kcal/mol}$

Possible Fates of Allylic Cobalt(II) Complexes: Addition to Aldehydes *vs* Transmetalation

 α -hydroxyallylation reaction

Homoaldol Reaction with Allylidene dipivalate

RCHO	T (°C)	Y (%)
Benzaldehyde	20	90
2-Furaldehyde	20	68
Anisaldehyde	20	83
Tolualdehyde	20	83
<i>n</i> -C ₇ H ₁₅ CHO	0	62
PhCH ₂ CH ₂ CHO	0	70
(CH ₃) ₂ CHCHO	0	82
<i>с</i> -С ₆ Н ₁₁ СНО	0	73

M. Lombardo et al. Advanced Synthesis & Catalysis 2005, 347, 2015

Possible Fates of Allylic Cobalt(II) Complexes: Addition to Aldehydes *vs* Transmetalation

α-Hydroxyallylation Reaction with Allylidene diacetate Modeling the allyl Co / ZnBr₂ transmetallation step

The late stage

 $CoBr_2$ Br L_2Zn OCOMe

The early stage

α-Hydroxyallylation Reaction with Allylidene diacetate Allyl Co / ZnBr₂ transmetallation

R

RCHO	Y (%)	syn : anti
Benzaldehyde	80	70 :30
<i>p</i> -Chloro-benzaldehyde	75	75 :25
Anisaldehyde	71	70 :30
Cinnamaldehyde	55	70 :30
<i>n</i> -C ₇ H ₁₅ CHO	60	20 : <mark>80</mark>
(CH ₃) ₂ CHCHO	60	2 : <mark>98</mark>
(CH ₃) ₃ CHO	55	1:99
<i>с</i> -С ₆ Н ₁₁ СНО	61	2 : <mark>98</mark>

New methodologies for the hydroxyallylation reaction, under Barbier/Grignard conditions

• Searching for substrates, suitable for the oxidative addition to low valent metals

The Nozaki-Hiyama-Kishi coupling of organic halides and carbonyl compounds, mediated by Cr(II), applied to acrolein acetals

89%, 76% d.e.

Takai, K.; Nitta, K.; Utimoto, K. *Tetrahedron Lett.* **1988**, *29*, 5263 Takai, K.; Morita, R.; Toratsu, C. *Angew. Chem. Int. Ed. Eng.* **2001**, *40*, 1116

Fürstner catalytic version of the Nozaki-Hiyama-Kishi reaction

A. Fürstner, N. Shi J. Am. Chem. Soc. 1996, 118, 12349-12357

Conditions: Mn(0), CrCl₃ (30%), Bu₄NI (20%), TMSCl, AN, 60°C

M. Lombardo et al Synlett 2003, 43-46

M. Lombardo et al. Chem. Commun. 2003, 1762

R of RCHO	Y (%)	Syn : Anti	Syn e.e. (%)	Anti e.e. (%)
Cyclohexyl	68	83 : 17	94	67
<i>n</i> -Pentyl	50	<mark>83</mark> : 17	93	65
2-Phenylethyl	78	<mark>85</mark> : 15	99	85
<i>i</i> -Propyl	45	<mark>72</mark> : 28	92	77
2-Methylpropyl	55	<mark>80</mark> : 20	92	60
Phenyl	77	71 : 29	64	43
2-Naphthyl	60	78 : 22	73	23

New methodologies for the hydroxyallylation reaction, under Barbier/Grignard conditions

• Searching for substrates, suitable for the oxidative addition to low valent metals

Zn, In

$\begin{array}{c} \text{Br-CH}_2\text{-CH}=\text{CH-OCOR}\\ \text{and}\\ \text{Br-CH}_2\text{-CH}=\text{CH-OCOOR} \end{array}$

The 1,3-Metallotropic Shift. Theorethical Investigation

(DFT-B3LYP and MP2: 3-21G*, DZVP, 6-311G* basis sets)

Zinc-promoted Barbier-type Acetoxyallylation of Aldehydes in *aq* NH₄Cl. An Efficient, Environmentally Friendly Protocol

This protocol works with ketones, too, in the presence of 20% of THF; yields up to 98% and same stereocrossover with aromatic or fully aliphatic ketones

M. Lombardo et al. *Chem. Commun.* **2001**, 2310; M. Lombardo et al. *J. Org. Chem.* **2003**, *68*, M. Lombardo et al. *Tetrahedron Lett.* **2003**, *44*, 2823-2826

Indium-promoted Grignard-type α-Hydroxyallylation of Aldehydes in Organic Solvents (THF, MeCN, DMF,...)

M. Lombardo et al. *Org. Lett.* **2001**, 2981-2983 M. Lombardo et al. *J. Org. Chem.* **2003**, *68*, 997-1006

Two-carbon homologation of aldoses via three-carbon chain elongation

Palmelund, A.; Madsen, R. J. Org. Chem. 2005, 70, 8248

 α -Hydroxyallylation of α -amidoalkyl phenylsulfones *anti*-diasetereoselective ynthesis of 1,2-amino-alcohols

50-88%

Petrini, M.; Profeta, R.; Righi, P. J. Org. Chem. 2002, 67, 4530 Giri, N.; Petrini, M.; Profeta, R. J. Org. Chem. 2004, 69, 7303

anti/syn = 80-20 - 95.5

Kenicke, L.; Fristrup, P.; Norrby, P.-O.; Madsen, R. J. Am. Chem. Soc. 2005, 127, 15756

α-Hydroxyallylation of Nitrones

Syn-diaseteroselective synthesis of 1,2-amino alcohols

R = alkyl, phenyl Y = 70-87%, *syn/anti* = 60/40 ÷ 80/20

M. Lombardo et al. Tetrahedron Letters 2005, 46, 3789

Nucleophilic addition of orgometallics to nitrones, see: M. Lombardo & C. Trombini *Curr. Org. Chem.* **2002**, *6*, 695-713 M. Lombardo & C. Trombini *Synthesis* **2000**, 759-774

3-Halo-propenyl Carbonates: Free-radical Bromination of Allyl Carbonates

R = Me, Ph, tBu

3-Halo-propenyl Carbonates: α-Hydroxyallylation of Carbonyl Compounds in Water (Barbier conditions)

Aromatic and conjugated aldehydes: Y = 88-98%,syn = 70-88\% /anti 12-30%Saturated aldehydes:Y = 85-95%,syn = 5-30% /anti 70-95%

M. Lombardo et al., Synthesis (Special Topic) 2005, 2609

3-Halo-propenyl Carbonates: α–Hydroxyallylation of Carbonyl Compounds in DMF (Barbier or Grignard conditions)

Aromatic and conjugated aldehydes: Y = 91-98%, trans 77-95% cis = 5:23% Saturated aldehydes: Y = 88-98%, trans 7-28% cis = 72-93% trans/cis = 28:72 - 7:93

Usual diastereoselectivity, almost invariant in the temperature range $-50^{\circ}C \div +20^{\circ}C$ (p-nitrophenylbenzaldehyde reacts quantitatively, but under Grignard conditions, only).

M. Lombardo et al., Eur. J. Org. Chem. 2006, 3061

3-Halo-propenyl Carbonates: α-Hydroxyallylation of the Garner aldehyde in DMF

M. Lombardo et al. *Org. Lett.* 2006, *8*, 3303
M. Lombardo et al. *Tetrahedron* 2004, *60*, 11725
M. Lombardo et al. *Tetrahedron Lett.* 2003, *44*, 9147-9149

Synthesis of D-ribo-phytosphingosine

M. Lombardo et al. Org. Lett. 2006, 8, 3303

3-Halo-propenyl Carbonates: α-Hydroxyallylation of imines and of α-amido-alkyl phenylsulfones. The most efficient routes to *anti*-1,2 aminoalcohols.

87%, d.r. > 95:5

