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Supramolecular Assistance .
to the Covalent Synthesis of Thermodynamic

[2]Rotaxanes Control
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O The ratio of A:B is dependent only upon the relative stabilities of A and B.




Thermodynamic Control Operates
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Dynamic Formation of New Interlocked Molecules
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Daisy Chains
_ and
Supramolecular
Polymers

The Aggregation of Self Complementary Molecules
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X-Ray crystallographic analysis revealed the crystals to
be racemic (i.e., containing equal amounts of A and C)
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Thermodynamic Control
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Supramolecular Assistance

to the Covalent Synthesis of Kinetic Control
[2]Rotaxanes
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Q If complexatiohldecc)mplexation is fast relative to Covalent Modification,
~ then the ratio of A:B is proportional to the difference in the activation free
energies of the transition states leading to A and B.




A [2]Rotaxane Formed Under.Kinetic Control
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A Highly Specific-Synthesis of a-Molecular Shuttle
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The [2]Catenane — A Basis for Building Molecular Switches
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- A Continuous
anor-Acceptor
Stack is Observed
in the Crystal
Lattice of the
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s oo Controlling
| Circumrotation
The Journal of Organic Chemistry in the
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Schematic Representations of the Monolayers
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Current-Voltage Trace and
Reproducibility Demonstration
for the [2]Catenane Device

_T| Electrode Current/ pA
Poly-Si Electrode
with
[2]Catenane Monolayer

0.11

I i b)
Current
Ratio

1

20 1.0 0 1.0 20
Voltage / V——»
01 ——
2.0 -1.0 0 1.0 2.0

Voltage /V ——»

c) ™
6l - —
Resistance
at+0.1V/
x108Q 4]
2 v v —. .
1 4 7 10
Read/Write Cycles ——
a) 'Omo“' oMO )
;0 ) o) 0= :>_1
o w1 @_gﬁ Ig\—p- NS g NT
P CL @ =% V0T
©) X T=—J JI&
5 % @ () @

Net Oxidizing

[=]

Net Reducing

&
<

Proposed Mechanism

for the

Operation of the Device

® [A°] Ground state / Switch open

READ JUNCTION RESISTANCE AT + 0.1V
® +2 V Bias across junction creates [A’]
,whic‘yh uﬁdergoeé circumrotation
to give [B]* '
® Reduction of [B*] generates [B]
® [B is the closed state of the device
READ JUNCTION RESISTANCE AT+01V
® Partial reduction (at —2 V) is necessary
to regenerate [A%] by an activated
process. ’
THUS
While the [A*] to [B*] circumrotational
process is voltage activated, the
regeneration of [Ao] from [BD] is
thermally and voltage activated.



Molecular-Based Memory Devices

*An electronically addressable, reconfigurable, molecular-based,
solid-state switching device capable of ambient operation has been
fabricated.

*The device utilizes a single monolayer of redox-controllable
[2]catenane molecules anchored with phospholipid counterions and
sandwiched between two electrodes.

® The device exhibited robust operation under ambient conditions and
could be cycled many times.

®*The change in the junction resistance between the closed and open
states of the device is approximately a factor of 2 —

IMPLYING THAT THEY MAY BE USEFUL AS MEMORY DEVICES

Electronically-Configurable
Molecular-Based Logic Gates

Science 1999, 285, 391-394
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“Molecular-Based-Logic.Gates

®| ogic gates have been - fabricated ‘from an array of
configurable switches — each consisting of a monolayer of
redox-actlve molecules sandWIched between metal
electrodes. - - -+ .

® The switches can be read by monitoring current flow at
reducing voltages.

¢ In the closed staté, current flow is dominated by resonant
tunneling through the electronic states of the molecules.

® The switches are lrreverSIny opened by applying an
oxidizing voltage across the device.

e Several devices have been configured together to produce
AND and OR logic gates.

Take Home Messages

® Synthesis does not begin and end with the makmg and breaking of
covalent bonds.

e Synthetic supramolecular chemistry is in its infancy.

e Dynamic covalent chemistry provides a thermodynamic means of making
interlocked molecules.

e Interlocked molecules beyond catenanes and rotaxanes are on the
horizon.

e Slippage is an appeling way of assembling rotaxanes.

e Reactions done under kinetic control can be used to interconvert
interlocked molecules and incorporate them into large assembilies.

e Solid-state superstructures of complex systems are far from being
predictable.

e Supramolecular polymers that incorporate lntertwmmg as well as
noncovalent bonding are not far off.



- ® Molecular shuttles, switches, and muscles have been demonstrated in
solution.

® Catenanes and rotaxanes can be self-organized as monolayers at the
air-water interface and transferred onto solid supports.

e A molecule-based solid-state electronicalIy-reconfigurable switch has
been demonstrated.

e Mechanochemical processes observed in solutions of catenanes and
rotaxanes are transferrable with modifications into device situations.

e Electronically-configurable molecular-based logic gates have been
fabricated into a device.

e Chemistry provides the means to transfer concepts between the life
sciences and materials science.

Artificial Molecular Machines

"Just as dyes came to the fore and
brightened up our lives in the 19th
century and drugs came onto the
scene and made our lives more
bearable in the 20th century, so the

21st century will be dominated by
devices that will transform our lives:
beyond our wildest dreams."

Balzani— Credi—Raymo — Stoddart
Angew.Chem. Int. Ed. 2000, 39, 3348-3391





