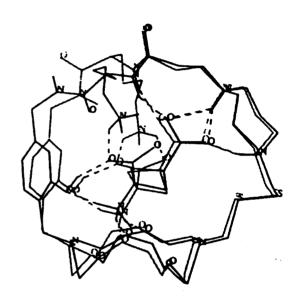


Pseudoreceptors and Minireceptors

- o Flexible comparison of pharmacophore elements
- o Mechanistic insights
- o Selectivity by evaluating multiple receptors or subtypes
- o $\Delta E_{bind}(rel)$ ($\Delta G_{bind}(rel)$ via Free Energy Perturbation
- o 3-D searches as for enzyme X-ray structures
- o De novo design

Minireceptor Enzyme Validation

- Simulate active site of Human Carbonic Anhyrase (2. Å resolution) with four potent docked sulfonamide inhibitors and the program YAK
- o Nine residues targeted including the catalytic Zn


o Five of nine residues sited within 0.7 Å of X-ray positions; mean deviation for all nine 1.7 Å. For Thermolysin and 3 phosphorimidate inhibitors, average deviation of 1.3 Å for 12 AA side chains

(Snyder, J.P.; Rao, S.N., Koehler, K.F.; Vedani, A. in "3D QSAR in Drug Design," Ed. H. Kubinyi, ESCOM, Leiden, 1993, pp 336-354)

NMDA Agonists Glutamic Acid Receptors

Schematic representation of the pseudoreceptor constructed around SRS-CPG. Curved lines correspond to molecular spacers between the key binding groups.

Comparison of the AMBER optimized cis-2.4-MG. pseudoreceptor complexes before and after the F transformation MGA \rightarrow S-GLU \rightarrow MGA.

Comparison of experimental and predicted free energies of binding for NMDA agonists relative to (S)-glutamic acid: $\Delta\Delta G_{binding}$ ($\Delta G_{agonist}$ - ΔG_{S-GLU}). kcal/mol, 277°K

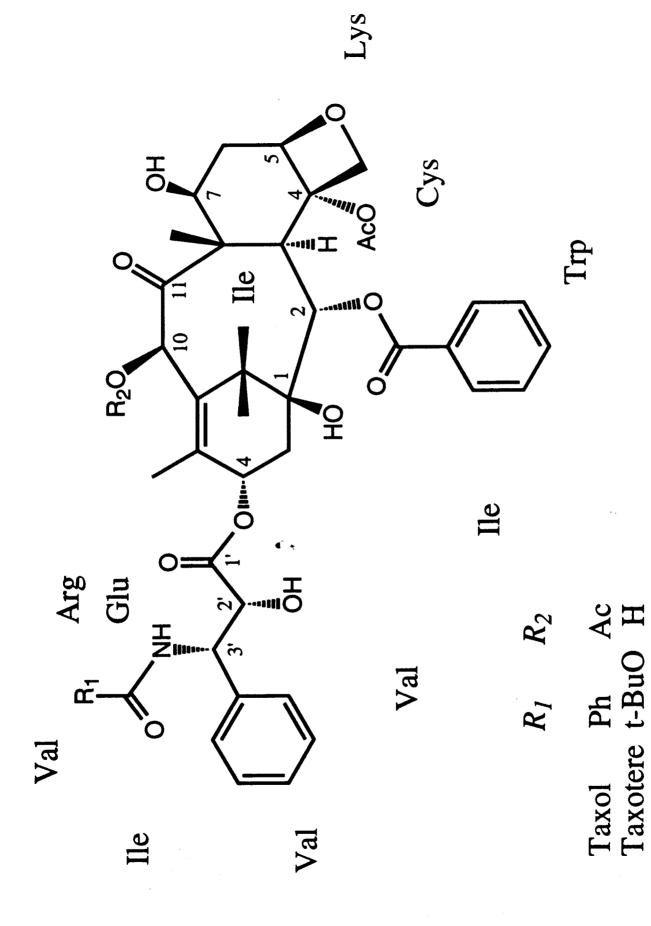
		Ki(μM) ²	⁷⁷ ΔG _{exp}	$\Delta\Delta G_{exp}$	ΔΔG _{calc}	ΔΔG _{calc}
٥٠٠٥					H ₂ O	DE(Ar)
. I	S-Glu	0.036	1.8	0.0	20	()
нуй С	R-Glu	2.7	-0.55	2.4	16.9	1.8
J # %-	SRS	0.009	2.6	-0.76	-2.0	-1.9
H3N-X >	RSR	0.055	1.6	0.23	-3.1	-0.9
* NH ₂	SSR	0.15	1.0	0.79	9.2	2.8
	RRS	1.7	-0.29	2.1	4.4	0.1
J. A. K.	MGA	0.052	1.6	0.20		1.4
0 3	NMDA	3.3	-0.66	2.5	_	1.3
CH3 NH5 O						

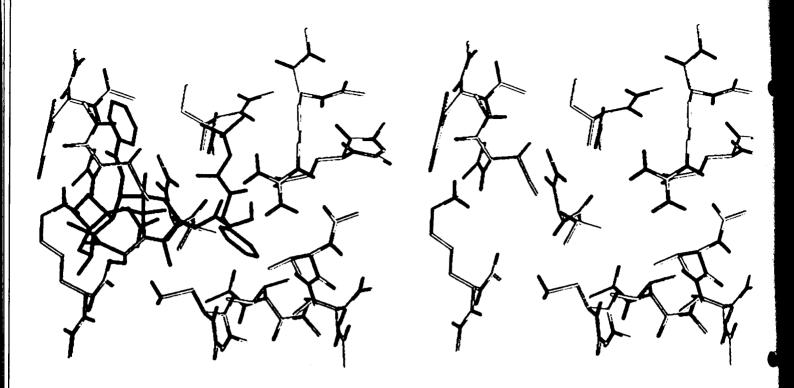
(Snyder, J.P.; Rao, S.N., Koehler, K.F.; Pellicciari, R. in "Trends in Receptor Research," Eds. P. Angeli, U. Gulini, W. Quaglia, Elsevier, 1992, pp 367-403)

Taxol and Taxotere

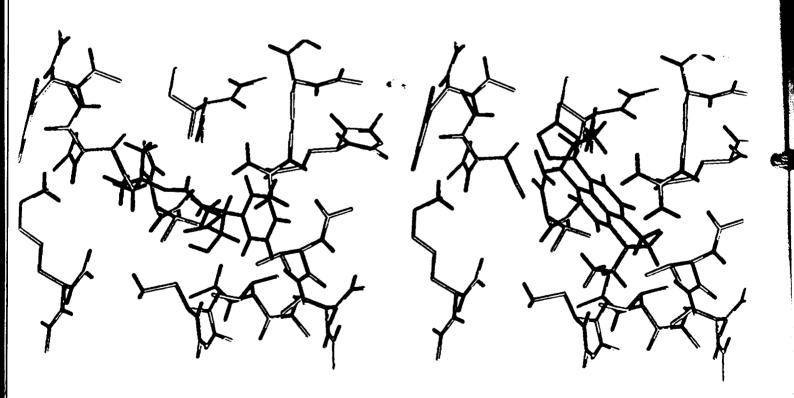
- o Isolated in limited quantities from the Western Yew tree and related species
- o Exciting antitumor lead in early clinical trials:

Drug refractory, advanced ovarian cancer Metastatic breast cancer Non-small cell lung cancer Head and neck cancer


- o Unique mechanism of antimitotic action: promotes assembly and stability of microtubules
- o Total synthesis in 1994:

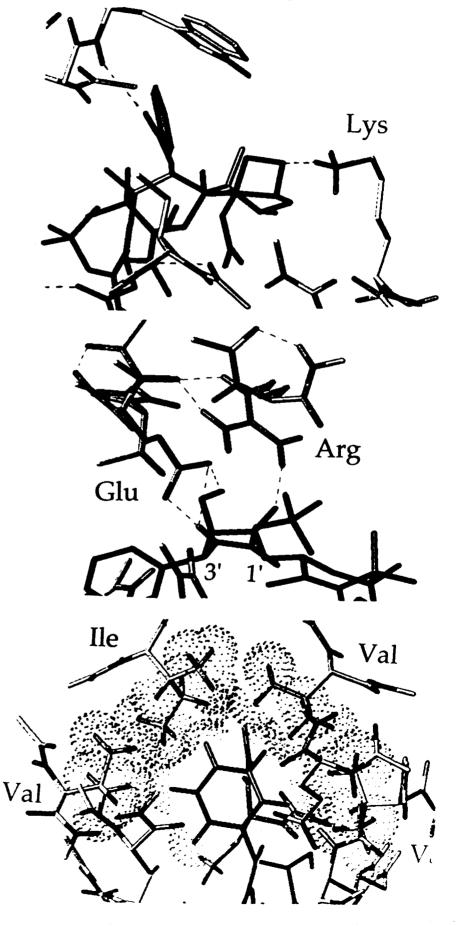

R. Holton et al, *J.Am.Chem.Soc.* **1994**, *116*, 1597 K.C. Nicolaou et al, *Nature* **1994**, Feb. 17, 631

- o Considerable SAR available
- o No simple and bio-effective analogs known


Receptor Building and Design Templating

- o Use taxotere/taxol conformations believed to be bioactive (Williams et al, *Tetrahedron* 1993, 49, 6545; Can. J. Chem. 1994, 72, 252)
- o Taxotere surrounded by 11 amino acid side chains in accord with 31 β-tubulin N-terminal AA's (Rao et al *J. Biol Chem.* **1994**, 269, 3132) and known taxane SAR
- o AA's linked and resulting pseudoreceptor optimized with the AMBER force field
- o AA's capped and resulting *minireceptor* optimized with AMBER
- o Evacuated taxotere cavity searched with the *de novo* design tool LEAPFROG (Tripos)

Taxol/Taxotere capped minireceptor showing taxotere optimized interactions (left); receptor cavity (right)


Minireceptor binding two Leapfrog generated ligands derived from *de novo* design

Taxol/Taxotere capped minireceptor; Key interactions between side chains and three important ligand centers

H-bond between Lys and O of oxetane ring

H-bonds between Glu/Arg and the hydrophilic groups on the C1'-C3' side chain of taxotere

Hydrophobic pocket for Phenyl at C3' (Ile and 3 Val's)

LeapFrog Structures (Cramer, Tripos)

Conclusions

- o Mini- and pseudoreceptor construction facile and realistic
- o Semiquantitative prediction possible
- o Unique 3-D molecular design feasible
- o GrowMol design* and database screening underway
- * Bohacek, R.S.; McMartin, C. J.Am.Chem.Soc. 1994, 116, 5560)

Co-Conspirators

Prof. Roberto Pellicciari University of Perugia Italy

Ms. Hanneke Jensen *University of Groningen The Netherlands*

Dr. Konrad Koehler
IRBM, Pomezia (ROMA)
Italy

Dr. Regine Bohacek

Ciba-Geigy, Summit, NJ

U.S.A.