Importance of Chirality

COOL

соон

оМе

Thalidomide was prescribed to pregnant women for morning sickness during 1957-1962. But, it turned out to be a teratogen (creating malinformation in Embryos) having caused serious birth defects to more than10,000 babies. Later, it was confirmed that (*S*)-enantiomer was the culprit.

(±)-**Ibuprofen**, an <u>anti-inflammatory and analgesic drugs</u> can be used as body converts inactive (R)-enantiomer into (S)-one, but it takes time. For example, *S*-isomer reaches therapeutic conc. in body in 12 min whereas racemic one takes 30 min.

(*S*)-Naproxen is active, but the (*R*)-enantiomer has some undesirable side effects.

Racemic Switching (use of chirality for patent protection): Omeprazole (antiulcer drug; AstraZeneca) marketed in U.S. as a racemic form in 1995. The patent ran out in 2002. Since the pharmacological property lied in (*S*)-enantiomer, the company patented the (*S*)-enantiomer.

Principle of Enantioselectivity

1.0	93	84
1.5	98	93
2.0	99.4	97

Ways to Synthesize Chiral Molecules

- Asymmetric Induction

 a. Internal Auxiliary
 b. External Auxiliary
- 2. Chiron Approach
- 3. Resolution

a. Enzymatic b. Non-enzymatic

PYBOX and PYBOX–DIPH Ligands

Nishiyama introduced in asymm. hydrosilylation (1989), and later used in asymmetric cyclopropanation (1994) and other reactions. Evans and others used it extensively.

Singh introduced in enantioselective cyclopropanation (1994), and later used in <u>allylic oxidation of olefins</u>, <u>propargylation of imines</u>, and <u>Friedel-Crafts Reactions</u> (1994-2010). Loh used in asymm. allylation to aldehydes and ketones (2005).

Different peresters

Best results with "sb-pybox-diph" Ligand

Best results with "ip-pybox-diph" Ligand

1,5 Cyclooctadiene

cis and trans mixture of Cyclododecene

Acyclic Substrate (1-Octene)

Proposed Transition State Model

Enantioselective One-pot Three-Component Coupling Reaction

Org. Lett. 2006, 8, 2405.

Basis of 'ip-pybox-diph' ligand

C₂-Symmetric ip-Pybox Ligands

Importance of 'N' of Pyridine

Different Cu-Lewis acids

Ph	CHO + F	PhNH₂ + Ph── ──	5 mol ^y CHCl ₃	% Cu-(<u>S,S)</u> - , 0 - 25 °C	3 , NF Ph R	IPh
	SI. No.	Cu-salt	time	yield (%)	ee (%)	Ph
	1.	Cu(MeCN) ₄ PF ₆	12 h	90	96 ^a	-
	2.	Cu(MeCN) ₄ PF ₆	12 h	88	96	
	3.	(CuOTf) ₂ .PhMe	12 h	95	95 ^a	
	4.	(CuOTf) ₂ .PhMe	18 h	94	96	
	5.	(CuOTf) ₂ .PhH	12 h	92	95 ^a	
	6.	(CuOTf) ₂ .PhH	18 h	91	96	
	7.	Cu(OTf) ₂	24 h	95	94 ^a	
	8.	Cu(OTf) ₂	72 h	85	94	_

^a10 mol% catalyst was used.

Different Aldehydes

Different Aromatic amines

PhCH	O + Ar	NHa + Ph	5 mol% C CHCl ₃ , 0	CuPF ₆ - <mark>(S,S)</mark> - - 25 °C	3, ► V	HAr
1 HOIN	0 . /	<u> </u>			Ph R	
	SI. No.	Ar	time	yield (%)	ee (%)	` Ph
	1.	Ph-	12 h	88	96	
	2.	3-F-Ph-	24 h	93	95	
	3.	4-Br-Ph-	24 h	86	93	
	4.	3-Cl-Ph-	24 h	93	95	
	5.	4-MeO-Ph- (PMP)	16 h	98	90 ^a	

^a 10 mol% catalyst was used.

Different Aldehydes 10 mol% CuPF₆-(<u>S</u>,<u>S</u>)-**3**, NHPMP CHCl₃, 0 - 25 °Č RCHO + PMPNH₂ + Ph-Ph SI. No. R ee (%) time yield (%) 1. 98 Ph-90 (*R*) 16 h 2. 4-CI-Ph-28 h 91 90 (R 4-*i*-Pr-Ph-87 83 (R 3. 22 h 3,5-di Me-Ph-98 93 (R) 4. 16 h 5. 3-Br-Ph-26 h 96 80 (R) 3-Me-Ph-6. 22 h 99 92 (R) 26 h 7. 3-F-Ph-90 85 (R) 4-F-Ph-95 91 (*R*) 8. 24 h 9. 3-CI-Ph-92 82 (R 16 h 10. 2-CI-Ph-16 h 94 **97** (S) 11. 4-NO₂-Ph-46 h 90 90 (R) 12. 97 **99** (S) 2,4-di Me-Ph-18 h

Ligands used in propargylamine synthesis

Screening of Different Ligands

Best Ligands

Different Terminal alkynes with *p*-F-Benzaldehyde

SI. No. R		ip-py	/box-d	iph	sb-py	sb-pybox-diph		
		time y	/ield (%	%) ee (%)	time y	ield (%	%) ee (%)	
1.	PhCH ₂ CH ₂	62 h	80	82 (<i>R</i>)	72 h	70	89 (<i>R</i>)	
2.	<i>n</i> -Bu	62 h	67	84 (<i>R</i>)	72 h	65	91 (<i>R</i>)	
3.	4-Me-Ph	18 h	94	93 (<i>R</i>)	22 h	88	96 (<i>R</i>)	
4.	4-n-Pentyl-Ph	20 h	91	93 (<i>R</i>)	22 h	90	97 (<i>R</i>)	
5.	4-Br-Ph	20 h	93	90 (<i>R</i>)	24 h	93	94 (<i>R</i>)	
6.	4-OMe-Ph	24 h	98	92 (<i>R</i>)	26 h	97	96 (<i>R</i>)	

Effect of ortho-substitution on aromatic aldehydes

Study with 2-Chlorobenzaldehyde

SI. No. R		ip-p	ip-pybox-diph			sb-pybox-diph		
		time)	time yield (%) ee (%)			time yield (%) ee (%)		
1.	PhCH ₂ CH ₂	48 h	61	85	68 h	61	91	
2.	<i>n</i> -Bu	48 h	67	87	68 h	63	87	
3.	4-Me-Ph	22 h	97	98	25 h	89	98	
4.	4-Br-Ph	22 h	95	97	22 h	93	97	
5.	4-OMe-Ph	24 h	91	98	26 h	95	99	

Study with 2,4-dimethylbenzaldehyde

SI. No. R		ip-py	ip-pybox-diph			sb-pybox-diph		
		time)	/ield (%	%) ee (%)	time y	ield (%) ee (%)	
1.	PhCH ₂ CH ₂	62 h	92	97	70 h	75	97	
2.	4-Me-Ph	18 h	94	<mark>98</mark>	22 h	90	98	
3.	4-OMe-Ph	22 h	92	87	25 h	95	87	
4.	4-Br-Ph	24 h	95	98	22 h	96	99	

Limitations

Proposed Catalytic Cycle for Propargylation Reactions

Org. Lett. 2006, 8, 2405.

Friedel-Crafts Alkylation Reaction

Friedel, C.; Crafts, J. M. Compt. Rend. 1877, 84, 1392 &1450.

First Enantioselective Friedel-Crafts Reaction

Casiraghi et al. J. Org. Chem. 1985, 50, 5018.

<u>First Catalytic</u> Enantioselective Friedel-Crafts Reaction

up to 84% ee

Erker et al. Angew. Chem. Int. Ed. Engl. 1990, 29, 512.

Approaches for Enantioselective Friedel-Crafts Alkylation

Bandini et al. Helv. Chim. Acta 2003, 86, 3753.

Reiser *et al. Org. Lett.* **2006**, *8*, 6099. Liu *et al. Chem. Eur. J.* **2009**, *15*, 2055.

Effect of Temperature and Catalyst Loading

entry	Catalyst	temp	time	yield (%)	ee (%)
1	10 mol %	rt	15 min	90	88
2	10 mol %	0 °C	15 min	96	96
3	10 mol %	-20 °C	15 min	97	99
4	5 mol %	-20 °C	15 min	96	99
5	2 mol %	-20 °C	5 h	94	96
6	1 mol %	-20 °C	12 h	89	82

Solvent Study

Different Indoles L1 0 R_2 L1-Cu(OTf)₂ 5 mol % CHCI₃, -20 °C Ŕ₁ . R₁ yield (%) ee (%) R_1 R_2 time entry 99 15 min 96 1 н Н 2 97 97 5-F 1 h н 3 H 5-CI 1 h 92 96 4 6h 93 97 н 5-Br 5 15 min 98 95 5-OCH₃ н 6 86 н 5-CN 7 d 83 7 CH_3 н 30 min 97 86 8 3h 94 87 Bn Н 9 $2-CH_3$ 97 н 15 min 67

- Tendency of dialkylation
- Limited substrate scope (most of the literature known methods can not tolerate substitutions at pyrrole)
- Instability towards acids

* Dimer consisted of a 77:23 mixture of C_2 -symmetric (>99% ee):meso isomer.

10 mol % -60 °C

catalyst

loading

5 mol %

10 mo**l** %

10 mol %

10 mol %

10 mol %

10 mol %

temp

-20 °C

-20 °C

-40 °C

-60 °C

-60 °C

-60 °C

time

15 min

15 min

30 min

3 h

2 h

2 h

2 h

entry

1

2

3

4

5

6

7

pyrrole

1.5 eq

1.5 eq

1.5 eq

1.5 eq

5 eq

10 eq

20 eq

yield (%) 1 2

36

46

42

40*

17

12

63

48

65

42

69

75

90

ee (%)

1

95

95

96

96

93

85

85

NH 1.5 eq	0 + Ph 1.	P N O eq	Ph O N N Ph N L1 L1-Zn(0 CHCl ₃	$T_{\rm N} \rightarrow Ph$ N Ph OTf) ₂	→ ^N H	Ph O	
	entry	catalyst loading	temp	time	yield (%)	ee (%)	
	1	10 mol %	-20 °C	30 min	85	96	
	2	10 mol %	-40 °C	1.5 h	84	98	
	3	10 mol %	-60 °C	9 h	95	>99	
	4	5 mol %	-60 °C	24 h	59	99	
	5	2 mo l %	-60 °C	4 d	59	85	

Lewis Acid	H Study Ph Ph Ph Ph Ph Ph Ph Ph Ph	L1 12 mol % wis Acid 10 mol CHCl ₃ , -60 °C	Ph h ≫ √ N H Pr		
entr	y Lewis acid	time	yield (%)	ee (%)	
1	Zn(OTf) ₂	9 h	97	>99	
2	Cu(OTf) ₂	Зh	42	96	
3	(CuOTf) ₂ ·PhCH ₃	3, 2.5 h	89	95	
4	Cu(CH ₃ CN) ₄ ·PF	₆ 7d	nr	nr	
5	(CuOTf) ₂ PhH	1 h	86	94	
6	Cu(ClO ₄) ₂ ·6H ₂ O	30 min	51	96	
7	Cu(BF ₄) ₂ xH ₂ O	30 min	67	95	
8	Sc(OTf) ₃	3 h	38	0	
9	In(OTf) ₃	30 min	34	6	
10	Yb(OTf) ₃	30 min	38	37	
11	Sn(OTf) ₂	2 h	29	2	
12	Mg(OTf) ₂	5 d	nr	nr	

Catalyst Screening

\mathbb{R}_{2}	entry	Ligand	time
R ₂ R ₂	1	L1	9 h
	2	L2	3 h
L1 . $R_1 = I^{-} \Gamma I$, $R_2 = \Gamma II$, $A = IN$ L2 : $P_1 = I_2 R_1 P_2 = P_2 P_1 P_2 = N$	3	L3	24 h
13 : $R_1 = M_{P}$: $R_2 = Ph$: $X = N$	4	L4	3 h
\mathbf{I}_{4} : $\mathbf{R}_{4} = \mathbf{s}_{2}$ - \mathbf{R}_{1} : $\mathbf{R}_{2} = \mathbf{P}\mathbf{h}$: $\mathbf{X} = \mathbf{N}$	5	L5	5 d
15 : $R_4 = i \cdot Bu$; $R_2 = Ph$; $X = N$	6	L6	24 h
L6 : $R_1 = Ph^{-1}R_2 = Ph^{-1}X = N$	7	L7	36 h
L_7 : R ₁ = Bn: R ₂ = Ph: X = N	8	L8	3 d
L8 : $R_1 - i$ -Pr: $R_2 - Ph$: X - CH	9	L9	24 h
L9 : $R_1 = i$ -Pr; $R_2 = Bn$; $X = N$	10	L10	24 h
L10 : $R_1 = i$ -Pr; $\bar{R}_2 = Et$; $X = N$	11	L11	40 h
L11 : $R_1 = i$ -Pr; $R_2 = H$; X = N			

L* 12 Zn(OT	mol % f) ₂ 10	5) mol	%►			, L	/
СНС	3, - 60	0°C		N H	Ph	Å	
						~~	

entry	Ligand	time	yield (%)	ee (%)
1	L1	9 h	96	>99
2	L2	3 h	75	96
3	L3	24 h	82	44
4	L4	3 h	92	98
5	L5	5 d	61	78
6	L6	24 h	69	7
7	L7	36 h	72	74
8	L8	3 d	31	5
9	L9	24 h	75	92
10	L10	24 h	67	95

79

79

Substrate Scope												
$ \begin{array}{c} & & & \\ & $												
	1.5 eq	1.0 eq			(0							
	entry	R	time	yield (%)	ee (%	<u>(6)</u>						
	1	Ph	9 h	96	>99							
	2	4-FC ₆ H ₄	3 h	90	98							
	3	4-CH ₃ OC ₆ H ₄	18 h	54	99							
	4	4-NO ₂ C ₆ H ₄	3 h	96	88	\bigcirc						
	5	3-NO ₂ C ₆ H ₄	3 h	99	99	Ph_O_N^O_Ph						
	6	$2-NO_2C_6H_4$	5 h	98	97	Ph N N Ph						
	7	4-CIC ₆ H ₄	3 h	86	98	イビゲ						
	8	3-CIC ₆ H ₄	5 h	96	>99							
	9	2-CIC ₆ H ₄	5 h	88	97							
	10	1-naphthyl	9 h	71	98							
	11	2-furyl	18 h	82	97							
	12	<i>n</i> -C ₅ H ₁₁	5 h	74	94							
	13	<i>с</i> -С ₆ Н ₁₁	12 h	76	94							

Determination of Absolute Stereochemistry

Proposed Transition State Model

Org. Lett. 2010, 12, 80.

Friedel-Crafts Alkylation of Furan

$\begin{array}{c} Ph & Ph \\ Ph \\ Ph \\ N \\ L1 \\ Ph \\ H \\ $												
	entry	R	temp	time	yie l d (%)	ee (%)						
	1	Н	rt	5 d	nr	nr						
	2	OMe	-20 °C	1 h	79	66						
	3	OMe	-60 °C	36 h	84	85						

Friedel-Crafts Alkylation of Anilines

