Organic Chemical Reactions in High-Temperature Water

Phillip E. Savage University of Michigan Ann Arbor, MI USA

Reactions in HTW

(Savage et al., AIChE J. 41, 1723, 1995: Savage, Chem. Rev., 99, 603, 1999)

- Alcohol dehydration to olefin
- C-C bond formation.
 - Friedel-Crafts Alkylation
 - Heck arylation
 - Diels-Alder cycloaddition
- Selective partial oxidation
 - Methane, methylaromatics
- Hydrogenation/Dehydrogenation
- Elimination
 - CO₂ from acids, halogens

High-Temperature Water (HTW)

- Water near its critical point (374 °C, 218 atm).
 - Properties between gas and liquid
- Inexpensive and non-toxic.
- Low dielectric constant and fewer hydrogen bonds.
 - High solubility for gases and organics.
 - Single phase at reaction conditions
- High ion product (10³ times ambient):
 - Acid/base catalysis (H₃O⁺, OH⁻).
- Tune fluid properties with T and P:
 - Optimization of the reaction environment.
 - Ease of product separation.

Organic Chemical Reactions in HTW

core competencies

- Experiments
 - Flow and batch reactors
 - Catalytic and noncatalytic reactions
- Kinetics, Mechanisms, and Modeling
 - Phenomenological models (engineering kinetics)
 - Mechanistic models (detailed chemical kinetics)
- Computation and Simulation
 - Computational quantum chemistry
 - Molecular dynamics simulation

Chemical Synthesis at Supercritical Conditions

- Current commercial chemical processes
 - Ethylene polymerization
 - Ammonia synthesis
 - Methanol synthesis

Cyclohexanol Chemistry in HTW

Model reaction system.

Reactions: Dehydration, rearrangement, dehydrogenation, aromatization, and rearrangement.

Goal: Determine the influence of T, P, ρ, pH, and catalysts on rates of different paths in HTW.

Outcome: Use knowledge gained to control chemical reactions in HTW.

Michigan Engineering

Roles for Water: Rxns in HTW

- Potential acid catalyst
 - Water has a natural supply of H⁺
 - [H*] strong function of temperature and density
 - Cyclohexanol dehydration
- Interact with reactants (hydrogen bonding)
 - Formic acid decomposition
- Differential solvation along reaction coordinate
 - Preferential solvation for transition state or reactants will affect kinetics
 - H₂O₂ dissociation

Cyclohexanol Dehydration in HTW

- Acid-catalyzed reaction Will it occur in HTW in the absence of added acid?
- Very limited previous work:
 - Crittendon & Parsons (1994) No reaction at 375 °C and 20 minutes in pure HTW.
 - Kuhlmann et al. (1994) 33% conversion at 300 °C and 60 minutes in pure HTW, cyclohexene the only product.
 - No kinetics or mechanisms available.
- Existing data are few & apparently contradictory!

Experimental Procedure

- Reaction conditions:
 - [cyclohexanol]₀ = 0.3 mol/L
 - T = 250-380 °C
 - \bullet pH₂O = 0.08-0.81g/cc
 - t = 15-180 min.
- Stainless steel batch microreactors (V = 0.59 mL), 2-3 min heat-up time.
- Condition reactors hydrothermally prior to use.
- Single phase (liquid or supercritical) at all reaction conditions by adjusting the water loading. Organic compounds are water-soluble at reaction conditions.

Experimental Procedure

- Recover reactor contents by addition of acetone.
- Product analysis by GC-FID and GC-MS.
 - HP-5 capillary column for separation of components.
 - Standard methyl cyclohexane.
- Multiple experiments at each condition to get experimental uncertainties.

Experimental Procedure

- Distilled, de-ionized water, sparged by helium immediately before use.
- Load and seal reactors in helium-filled glove bag.
- Immerse reactors in pre-heated, isothermal, fluidized sandbath.
- Remove from sandbath, quench in cold water (room temperature after ~1 min.).
- Cool in freezer to condense volatile products.

Effects of Dissolved Gases

- Dissolved air CO₂ (carbonic acid), O₂ (oxidant).
- Use un-degassed water in experiments to see effects.
- No difference in cyclohexanone yields impact of dissolved O₂ is negligible.
- Increase in rate of cyclohexanol dehydration and methyl cyclopentenes formation.
- Effects greatest at low densities and short times.
- For rigorous kinetics studies, it is important to remove these gases from water prior to use.

Effect of Metal Surface

Experimental Results - 275°C

Michigan**lingineering**

Michigan**Engineering**

Experimental Results - 250°C

Experimental Results - 300°C

Product Yields at 300 C (0.73 g/cc)

Experimental Results - 350°C

Experimental Results - 380°C

Experimental Results - 380°C

Experimental Results - 380°C

Experimental Results - 380°C

Comparison with Past Studies

This Work	Previous Work	Explanation	
> 90% conversion at 380 °C, 15 min.	Crittendon & Parson: No reaction at 375 °C, 20 min.	Very slow reactor heat-up (only 268 °C after 20 min in 375 °C furnace). Vapor and liquid phases present in the reactor.	
Kuhlmann et al.: 33% cyclohexene yield at 300 °C, 60 min.		Possible loss of some volatile products when opening reactors due to insufficient cooling before sampling.	

Effect of Water Density at 380°C

Summary of Experimental Data

- Cyclohexanol dehydration occurs readily in HTW.
- Major product is cyclohexene, by-products are 1- and 3-methyl cyclopentenes.
- When the methyl cyclopentenes yield increases, the cyclohexene yield decreases, but the cyclohexanol conversion is unchanged.
- Rate of cyclohexanol disappearance and selectivity toward methyl cyclopentenes increase with increasing temperature and water density.
- Reaction rate is very low at very low water densities (below ~0.1 g/cc).

Effect of Water Density on K. at 380°C

Reaction of Cyclohexene in HTW

• Cyclohexene as the starting material (t = 60 min).

T (°C)	Cyclohexanol Yield	Me-Cyclopentenes Yield	
300	14.3 ± 6.1%	1.7 ± 1.6%	
380	2.7 ± 0.5%	15.3 ± 6.0%	

- 2 paths: (1) hydration of cyclohexene and (2) rearrangement.
- Different paths preferred at different temperatures.

Michigan Engineering

K_w at Experimental Conditions

Alcohol Dehydration Mechanisms

- Classic organic chemistry E1cB, E1, and E2.
 - E1cB occurs in the presence of strong base, via carbanion intermediate.
 - E1 occurs in the presence of strong acid, via carbocation intermediate.
 - E2 occurs in the presence balanced acidity/basicity; concerted elimination of H and OH.
- Dominant mechanism not always clear, depends on catalyst, reaction medium, temperature, and alcohol structure.
- Our candidate mechanisms E1 or E2.

E1 vs. E2 Mechanisms

Carbocations in HTW

- Are carbocations any more or less stable in HTW?
- Shift in mechanism with reaction condition is possible.
- Changes in product distribution suggests that dehydration mechanism changes from E2-like to E1like as the temperature increases.
 - 1,2-diphenyl-2-propanol over alumina.
 - t-pentanol over TiO₂.
 - 2-butanol on ThO₂.
- Even in water, formation of carbocations may become more favorable at higher temperatures.

Carbocations in Water

- Gas-phase deuterium-labeling experiments gave evidence for carbocations as the intermediates in cyclohexanol dehydration → E1 mechanism?
- Solvation may play an important role in HTW!
 - Direct spectroscopic observation of carbocations only in anhydrous superacids, not in dilute (aqueous) acid solutions.
 - In water: $R^+ + nH_2O = ROH_2^+(n-1)H_2O \implies E2$.
 - ¹³CNMR t-butanol dehydrates via ROH₂⁺, not R⁺, even in moderately concentrated (>70%) H₂SO₄.
- Oxonium ions appear to be more stable in water.

Cyclohexanol Dehydration in HTW

- If E1 mechanism is dominant, major product should be 1-methyl cyclopentenes (most stable, from carbocation rearrangement).
- We observe cyclohexene as the major product → E2 mechanism should be dominant.
- Methyl cyclopentenes observed at T > 300 °C → carbocation formation becomes more favorable at high temperatures.
- 380 °C data suggest increasing water density also favors carbocation formation.
- Source of carbocation (1) cyclohexanol (E1) or (2) cyclohexene (E2).

Product Selectivities

Detailed Kinetics Model

 $\frac{d[NOL6]}{dt} = -k01[H_3O^+][NOL6] + k10[H_2O][OXO6]$

 $\frac{d[OXO6]}{dt} = k01[H₃O⁺][NOL6] - (k10 + k12)[H₂O][OXO6] + k21[H₂O][H₃O⁺][ENE6]$

 $\frac{d[ENE6]}{dt} = k12[H₂O][OXO6] - (k21[H₂O] + k23]H₃O⁺][ENE6] + k32[H₂O][CAT6]$

 $\frac{d[CAT6]}{dt} = k23[H₃O⁺][ENE6] - (k32[H₂O] + k34)[CAT6] + k43[CAT5]$

 $\frac{d[CAT5]}{dt} = k34[CAT6] - (k43 + k45[H₂O])(CAT5] + k54[H₃O⁺][ENE5]$

 $\frac{d[ENE5]}{dt} = k45[H_2O][CAT5] - k54[H_3O^+][ENE5]$

Proposed Reaction Mechanism

Parameter Estimation

- Fit the experimental concentration profiles to the model by adjusting the rate constants.
- Simultaneous numerical solution of ODEs and parameter estimation, using Scientist ®.
- Iterative procedure:
 - Separate fitting for each value of water density.
 - Calculate average parameters.
- Goal determine whether the model (i.e. mechanism) properly accounts for the role of water (catalyst, reactant, product).

Model and Experimental Results 380°C, 60 minutes

Summary

- Cyclohexanol dehydrates readily in pure HTW, forming cyclohexene and methyl cyclopentenes.
- Increases in temperature and water density enhance rate of cyclohexanol disappearance and methyl cyclopentenes formation.
- High reactivity of cyclohexanol relative to literature data is due to improved experimental procedures.
- Cyclohexanol dehydration proceeds via E2 mechanism, but carbocation formation becomes more favorable with increasing temperature and water density.
- Water is not an inert solvent but is an integral component of the reaction.

Roles for Water in Cyclohexanol Dehydration

- Water is an integral part of the reaction:
 - Water participates as a reactant and product.
 - Water is the source of H₃O*, the acid catalyst.
 - Water drives the reaction mechanism toward E2 by solvation, favoring the oxonium ion rather than the carbocation as the reaction intermediate.
- We can expect similar contributions in the dehydration of other alcohols in HTW, depending on the alcohol structure and reaction conditions.

Experimental Observations for Formic Acid Decomposition

Gas Phase (Blake et al., 1971)

Aqueous Phase (Yu & Savage, 1997)

 $CO/CO_2 \approx 10/1$

 $CO/CO_2 \approx 1/100$

 $k (700K) \approx 10^{-7} 1/s$

 $k(700K) \approx 10^{-1} 1/s$

Decomposition is much faster in aqueous phase

CO is main product in gas phase, CO₂ in aqueous phase

How is water influencing the rate and selectivity?

Molecular Mechanisms for Formic Acid Decomposition

Energy Diagram for Formic Acid Decomposition (with water)

Michigan Engineering

Energy Diagram for Formic Acid Decomposition (gas phase)

Exptl. & Quantum Chem. Results for Formic Acid Decomposition

(Akiya & Savage, AIChE J., 44, 405, 1998)

	Gas Phase		Aqueous Phase	
	Exptl.	Calc.	Exptl.	Calc.
CO ₂ /CO	10-1	10-1	10 ²	10 ²
k@700K	10-7	10.7	10-1	10-3-100

- Water molecules interact with and stabilize transition states
- These interactions influence both kinetics and selectivity

H₂O₂ Dissociation in Supercritical Water

- Extremely important reaction in SCWO
 - \bullet H₂O₂ = 2 OH
- Experimental observations (AIChE J., 43, 2343, 1997)
 - Rate faster in SCW than in gas phase at same pressure
 - Rate at 34.0 MPa lower than rate at 24.5 MPa

Molecular Dynamics Simulations

(Akiya and Savage, J. Phys. Chem. A 104, 4433 & 4441, 2000)

- \bullet Do MD simulations to calculate ΔA_{solv} and Δv^{\ddagger}
- Need intermolecular potential function (partial charges, LJ parameters) to do MD simulations
- Used DFT calculations to get force field parameters for H₂O₂-water interactions
- 499 water molecules and 1 H₂O₂
- $T_r=1.15$, $\rho_r=1.25$ for ΔA_{solv} calculations
- $T_r=1.15$, $\rho_r=0.25-2.75$ for Δv^{\ddagger} calculations

H₂O₂ Dissociation in SCW

(Akiya and Savage, J. Phys. Chem. A 104, 4433 & 4441, 2000)

Gas-phase and SCW-phase rate constants related by change in free energy of solvation (ΔA_{solv})

$$k_{SCW} = k_G \exp(-\Delta A_{solv}(r^{\ddagger})/RT)$$

Effect of density on rate constant related to activation volume (Δv^{\ddagger})

$$(\partial \ln k/d\rho)_T = (-\Delta v^{\dagger}/\rho RT \kappa_T)$$
$$\Delta v^{\dagger} = \vec{v}_{TS} - \vec{v}_{HMS}$$

Use MD simulations to calculate ΔA_{solv} and Δv^{\ddagger}

Free Energy of Solvation for H₂O₂ <u>Dissociation in SCW</u>

(Akiya and Savage, J. Phys. Chem. A 104, 4433 & 4441, 2000)

From MD simulations

$$k_{SCW} = k_G \exp(-\Delta A_{solv}(r^{\dagger})/RT) = (2.09/RT) = 1.44$$

From literature data

$$\left(k_{SCW}/k_G\right) = 3.27$$

with uncertainty
$$1.01 < (k_{scw}/k_G) < 10.6$$

Effect of SCW Density on Rate Constant for H₂O₂ Dissociation

Acknowledgments

- Naoko Akiya
- Michelle Osinski preliminary experiments.
- Jianli Yu experimental assistance
- Sponsors:
 - National Science Foundation.
 - ACS Petroleum Research Fund.
 - U.S. Environmental Protection Agency STAR Fellowship (2000-2001).

Summary and Conclusions

- Reaction rates in HTW can be density dependent.
- HTW contains a native H⁺ conc. sufficient for acidcatalyzed reactions. The H⁺ conc. and rate and selectivity can be controlled by controlling the water density
- Water molecules can interact with reactants and transition states to alter kinetics and selectivities.
- Density-induced changes in differential solvation along the reaction coordinate can influence HTW reaction rates.

