Synthesis of Marine Polyketides as Promising Anticancer Agents

Ian Paterson

21 September 2006

Ischia Advanced School of Organic Chemistry

Dolastatin 19 and Auriside B: Isolation and Biological Activity

- Sea hare Dolabella auricularia is a rich source of bioactive secondary metabolites originating from cyanobacteria in diet
- Dolastatin 19 isolated from Gulf of California Dolabella auricularia (0.5 mg from 600 kg) by Pettit group; cancer cell growth inhibitory activity; mechanism of action undetermined
- Auriside A and B, isolated from Japanese Dolabella auricularia (0.8 mg from 278 kg) by Yamada group; GI₅₀ 1.2 μg/ml for HeLa S₃ cervical cancer cell line

Pettit, G. R.; Xu, J.-P.; Doubek, D. L.; Chapuis, J.-C. *J. Nat. Prod.* 2004, *67*, 1252. Sone, H.; Kigoshi, H.; Yamada, K. *J. Org. Chem.* 1996, *61*, 8956.

Aurisides A and B: Synthesis Plan

Aurisides: C₁–C₇ Subunit Synthesis

- matched substrate and reagent induction in boron aldol sets up 1,4-syn relationship
- mild conditions for preparation and aldol addition of aldehyde avoids conjugation

Aurisides: C₈–C₁₇ Subunit Synthesis

- vinylogous Mukaiyama aldol using BINOL/Ti(OⁱPr)₄ installs isolated C₁₃ stereocentre and trisubstituted E-alkene
- regiocontrolled 1,4-reduction using L-Selectride generates enolate for key aldol coupling

Aurisides: Synthesis of Aglycon

- key aldol coupling introduces desired C₇ configuration without invoking chelation
- relies on 1,3-anti induction from the C₅ ether through an open transition state

Aurisides: Synthesis of Aglycon

- convergent strategy enables concise synthesis of the auriside aglycon moiety
- 16 steps, 4.7% overall yield (cf. 29 steps, 0.02% yield by Yamada and co-workers)

Sone H.; Suenaga, K.; Bessho, K.; Kondo, T.; Kigoshi, H.; Yamada, K. Chem. Lett. 1998, 85.

Aurisides: Synthesis of Fluorosugar Units

Auriside A: Completion of Total Synthesis

- late stage installation of the required disaccharide via an α -selective glycosylation of the equatorial C₅ alcohol
- total synthesis of auriside A achieved in 18 steps and 1.7% overall yield; complete ¹H and ¹³C NMR correlation and establishes absolute configuration

Paterson, I.; Florence, G. J.; Heimann, A. C.; Mackay, A. C. Angew. Chem. Int. Ed. 2005, 44, 1133.

Auriside B: Completion of Total Synthesis

- Mukaiyama protocol again employed for coupling of aglycon with activated sugar unit
- total synthesis of auriside B achieved in 17 steps and 3.5% overall yield; again complete NMR spectral correlation and establishment of absolute configuration

Paterson, I.; Florence, G. J.; Heimann, A. C.; Mackay, A. C. Angew. Chem. Int. Ed. 2005, 44, 1133.

Related 14-Membered Macrolides

Configurational Model Based on Common Biogenesis

Dolastatin 19: Synthesis Plan

Dolastatin 19: C₅–C₁₇ Fragment Synthesis

- C₁₃ stereocentre is available using common intermediate from auriside synthesis
- matched substrate and reagent induction in first boron aldol gives 1,4-syn relationship
- Evans-Tischenko reduction establishes differentiated 1,3-anti diol relationship

- DMB protecting group avoids competing DDQ-mediated oxidation of allylic TBS ether
- second boron aldol matches 1,4-syn preference of enolate with Felkin-Anh induction

Dolastatin 19: Preparation of Seco-acid

Dolastatin 19: Endgame

- total synthesis of dolastatin 19 achieved in 24 steps and 1.9% overall yield
- complete correlation of ¹H and ¹³C NMR data validates stereochemical reassignment
- aglycon is scaffold for late-stage diversification by variation of side chain and sugar unit

Spirastrellolide A: Isolation and Biological Activity

Methyl ester: R = Me

- 38-membered macrolide isolated by Andersen from the Caribbean sponge Spirastrella coccinea; low natural abundance (0.00024% isolation yield).
- potent and selective antimitotic agent which inhibits protein phosphatase 2A (PP2A), with $IC_{50} = 1nM$, and causes premature cell entry into mitosis; mechanism of action reminiscent of fostriecin, okadaic acid and the calyculins.

Williams, D. E.; Roberge, M. R.; Van Soest, R.; Anderson, R. J. J. Am. Chem. Soc. 2003, 125, 5296; Williams, D. E.; Lapawa, M.; Feng, X.; Tarling, T.; Roberge, M.; Andersen, R. J. Org. Lett. 2004, 6, 2607.

Spirastrellolide A: Structural Features

DEF-[5,6,6]-bis-spiroacetal

- · Double anomeric effects
- C₂₈ chlorination
- All substituents equatorial

- 38-membered macrolide comprising 21 stereocentres
- three embedded cyclic subunits: tetrahydropyran A-ring, BC-spiroacetal, DEF-bis-spiroacetal
- 1,4-(E,Z)-dienoic acid sidechain with isolated stereocentre
- relative stereochemistry between four highlighted regions remains unassigned

BC-[6,6]-spiroacetal

- Double anomeric effect
- All substituents equatorial

Towards Spirastrellolide A: Revised Approach to the ABC Subunit

- hetero-Michael reaction sets up cis-disubstituted tetrahydropyran
- pseudo-S₂ symmetry exploited to generate two diastereomeric C1–C11 subunits

Towards Spirastrellolide A: The C1–C16 A-Ring Alkynes

• boron-mediated 1,4-syn aldol reaction and 1,3-anti reduction sets up C11–C15 sequence

• Corey-Fuchs protocol installs terminal alkyne in readiness for coupling step

Towards Spirastrellolide A: The C17–C25 Aldehyde

• reagent-based induction used to configure C20, C23 and C24

lactate-derived ketone achieves highly selective anti aldol addition

Towards Spirastrellolide A: The C1–C25 ABC-Subunits I and II

NMR Comparison of Subunits I and II with Spirastrellolide

Comparison of relevant ¹H NMR chemical shifts of subunits I and II with spirastrellolide methyl ester

- Sharpless AD enables hydroxyl differentiation; recrystallisation enhances ee
- Brown crotylboration configures labile C34 methyl-bearing stereocentre

Towards Spirastrellolide A: The C26–C40 DEF Subunit

- asymmetric chloroallylation by Oehlschlager procedure configures chlorohydrin
- Sharpless AD using non-standard DHQ₂PYR ligand leads to matched situation
- Ba(OH)₂-mediated HWE and 1,4-reduction gives substrate for spiroacetalisation

Towards Spirastrellolide A: The C26–C40 DEF Subunit

spirastrellolide A

Ed Anderson Steve Dalby Olivier Loiseleur Jong-Ho Lim

aurisides & dolastatin 19

Gordon Florence Angela Mackay Anne Heimann Alison Findlay

funding

EPSRC Novartis Pharma AG Merck Research Laboratories AstraZeneca Syngenta

collaborations

Rob Paton (Cambridge) Fernando Diaz (CSIC, Madrid) Amy Wright (HBOI, Florida)