

ISCHIA ADVANCED SCHOOL OF ORGANIC CHEMISTRY

Dual Activation in Enantioselective Synthesis of Cyanohydrins

Christina Moberg

- HCN first prepared in 1782 by C. W. Scheele
- Versatile synthetic route to cyanohydrins known for more than 100 years
- First asymmetric cyanation made by Rosenthaler in 1908
- Metal catalysts affording highly enantioenriched products known today

Mowry, D. T., Chem. Rev. 1948, 42, 189 Rosenthaler, L., Biochem. Z. 1908, 14, 238 North, M., Tetrahedron: Asymmetry, 2003, 14, 147 Brunel, J.-M.; Holmes, I. P. Angew. Chem. Int. Ed. 2004, 43, 2752

Carl Wilhelm Scheele (1742-1786)

KTH STITUSOUT STITUSOUT STITUSOUT STITUSOUT		0 5 ca CN -4	mol% atalyst 10 °C		HO
	Base ti	me(h)	yield	ee(%)	
	DMAP	7	99	93	cinchonidine
	DABCO	7	90	90	HO
	Et ₃ N	3	97	92	MeO
	EtN/Pr ₂ Cinchonidine	3 ⊿	96 98	89 04	cuinino
	Quinine	4	93	93	н <u>Н</u>
	Sparteine	3	98	78	
					H sparteine

KTH VETERREAT VETERREAT VETERREAT VETERREAT					
OF TECHNOLOGY	Aldehyde	time (h)	yield isolated	ee (%)	
	Benzaldehyde Pivalaldehyde Valeraldehyde <i>p</i> -MeO-benzaldehyde <i>p</i> -CI-benzaldehyde <i>t</i> -cinnemaldehyde	4 6 7 3 7	95 81 78 79 90 97	92 73 87 94 92 94	
	(<i>R</i> , <i>R</i>)-Salen-Ti + Et ₃ N	-40 °C			

ADVAL INSTITUTE	о Н + С		0% L	<u>0</u>	O L CN	
	L t	time (h)	yield	ee (%)		
	-	24	0	-		
	DABCO	9	67	92		
	Et ₃ N	8	96	94		
	Sparteine	8	93	65		
	Cinchonidine	9	78	96		
	Sparteine	8	96	-67	(ent-complex)	
	Cinchonidine	9	75	-92	(<i>ent</i> -complex)	
	S. Lundgren, E. Wingstrand, I	M. Penhoat, C.	Moberg, J. Am.	Chem. Soc. 2005	5, 127	

ROVAL INSTITUTE	Lewis Base Activation	R H	R R CN	
	Aldehyde	time (h)	yield isolated (9	ee %) (%)
	Benzaldehyde	10	89	94
	Pivalaldehyde	6	84	76
	Valeraldehyde	6	89	90
	<i>p</i> -Me-benzaldehyde	10	90	96
	<i>p</i> -MeO-benzaldehyde	12	72	94
	<i>p</i> -Cl-benzaldehvde	8	89	95

Conclusion

Lewis acid-Lewis base activation is efficient in cyanations of aldehydes with acetyl cyanide and cyanoformate, providing O-functionalized highly enantioenriched cyanohydrins in high yields with perfect atom economy. The conversions and enantioselectivities can be idetermined by an enzymatic high throughput method.

