From Deep Sea Sponge

To

Pilot Plant

Adventures in natural product synthesis

S. J. Mickel, Novartis

Discussion points

Background

Comments to Disco Structure

Route selection

Execution

Statistics

Outlook

Discodermolide: A Novel Microtubule Stabilizing Agent

Marine natural product patented by HBOI (1990) Licensed to Novartis in 1998

dictyostatin

lailimalide

R = H: epothilone A R = Me: epothilone B

Ph

FR182877

Taxol

Discodermolide: A Novel Microtubule Stabilizing Agent

Mechanism of action: stabilization of microtubules, mitotic arrest → apoptosis (clinically validated)

Potent inhibitor of paclitaxel (PTX) – resistant cell lines; Active *in vivo* vs. PTX-resistant tumors Phase I August 2002 (advanced solid tumors)

Bone Metastasis Imaging Model

PC-3M2AC6 luciferized human prostate carcinoma

VEHICLE TREATED MICE

15 mg/kg XAA296 (ONE DOSE)

Discodermolide Structure and retro synthesis

Route Selection

Selected route must be capable of delivering

100 - 1000g

amounts of discodermolide

Evaluation of Published Syntheses (as of ca. 2000)

Smith
Myles
Schreiber
Marshall
Paterson

Evans Golec Heathcock Masamune Overall yield Crystalline intermediates Chromatography Problematic reactions Changes in Oxidation state Organometallic reagents Stereochemistry Final crystallisation

Evaluation of Published Syntheses (as of ca. 2000)

Smith — High pressure reaction

Myles — Not stereoselective, MOMCI

Schreiber \longrightarrow O_3 , PhSTMS, $HgCl_2$

Marshall — Low M.wt.acetylenes, Sn chemistry

Paterson — Selenium chemistry, B chemistry

Retrosynthetic Analysis (Novartis-Smith-Paterson- Hybrid)

Chosen route

Key structures

Execution

$$2 - 3$$

Scale, 55 Kg 2 = 230 Mol/reaction 4 times

LiAlH₄ yield 85%

Work up, very slow filtration >24 hours

LiBH₄ 86% yield

Work up, quench HOAc, extraction, <3 hours

Common Precursor

Common Precursor Synthesis

- 1 Thermal problems
- 2 Side product

Common Precursor

Common Precursor

Campaign	yield	Absolute quantities
1 (6g)	30%	3.5Kg
2 (60g)	35%	35.0Kg
3 (500g)	61%	110.0Kg

1st Campaign, 1.40 Kgs 9 = 5.3Mol/reaction, 4 reactions 2nd Campaign, 14.4 Kgs 9 = 54.5Mol/reaction, 3 reactions

Isolated side products

1st Campaign, 5.0Kgs 11 = 8.2 Mol, 3 reactions 2nd Campaign, 31.7Kgs 11 = 52 Mol, 2 reactions

Chromatography required

13a

1st Campaign, 2.5 Kgs 13b = 6.6 Mol, 4 reactions 2nd Campaign, 28 Kgs 13b, = 74 Mol, 10 reactions

13a side products

13a side products

Campaign	Yield	Absolute quantities
1 (6g)	22%	0.5Kg
2 (60g)	20-30%	3.4Kg
3 (500g)	30.5%	11.8Kg

14 Suzuki Coupling

13

2nd Campaign 11.8Kgs 13a = 23mol, 3 reactions

U NOVARTIS

14 Suzuki Coupling

· Very complex process Overall yield

Absolute quantities

Large excess of 13 necessary

1 (6g)

50%

0.15Kg

· Product isolated from RM by crystallisation

· 70% yield (10g)

53%

3.7Kg

· Catalyst (5999) cture

11.4Kg

1st campaign
A15 1.0x
Et₃N 4.2x
SO₃-Py 3.1x
Bisulphate
70% yield 17% side product

2nd campaign
A15 1.0x
Et₃N 3.4x
SO₃-Py 2.5x
Bicarbonate
92% yield 2% side product
1.7Kgs 15, = 2.0Mol, twice
Planned 9 Kgs 15, = 11Mol, 3 reactions

NOVARTIS

16 Side product

Introduction of cis-diene unit

- Scale
- · 1st Campaign 1.6 kg, 1.88 mol, twice
- · 2nd Campaign 11.6kg, 14.4 mol,
- · three times
- Requires $4.5-5.0 \times CrCl_2 = 3Kg$
- Two step process

1st Campaign complete after 2 hours RT 2nd Campaign

1st batch no reaction after 2 hours RT!

+ 20% CrCl₂, complete after 18Hr RT!

Before 2nd batch Lab test OK

2nd batch as 1st batch - NO REACTION

RM aerated! Complete after 18Hrs RT!

3rd batch as 2nd batch - NO REACTION Heated to 40°C, complete within 2 Hrs!

Campaign

Overall yield

Absolute quantities

1 (6g)

80%

0.3Kg

2 (60g)

82%

2.7Kg

3 (500g)

65%

7.3Kg

25

Aldol chromatography

- 2 reactions combined = 700g
- Diluted 368kg MeCN/TBME/H₂O 85/15/10
- Apply to 20kg RP-18 silica-gel (column 120x30cm)
 - Elute 1060kg MeCN/TBME/H₂O 85/15/10
 - Then 150kg MeCN/TBME 1/1
 - Collect 20kg fractions
 - Combine product fractions
 - Evaporate to 10% of original volume
 - Extract TBME, evaporate
- · Obtain 150g pure aldol product epimer free

27/28

1st Campaign, 75g 26, = 77mMol/reaction, 3 reactions; 50% yield

2nd Campaign, 1Kg 26, = 1 Mol planned, 3 reactions

HPLCs of Synthetic Disco

Cleavage side products

NOVARTIS

NVP-XAA296-NXA monohydrate

Problem steps

Global Technical Research & Development

Global Technical Research & Development

Costs and Future

Disco from the phase 1 campaign cost Lots of SFr/Kg

Future:

find and develop an alternative synthesis which is simpler, shorter, and cheaper with the aim of producing up to 25 kgs per annum

Global Technical Research & Development