Understanding the Stability and Reactivity of Functionalised Organozinc Reagents: Applications to Amino Acid and Cyclic Peptide Synthesis

> R F W Jackson University of Sheffield

Amino Acid Disconnections

Instability of β-Amino Anions

Reactions of Simple Organozinc Reagents

Y. Tamaru, H. Ochiai, T. Nakamura and Z.-i. Yoshida, Org. Synth. 1988, 67, 98

Amino Acid Derived Zinc Reagents

Synthesis of Phenylalanine Derivatives

J. Med. Chem., 1996, 39, 1991 Synlett, 1997, 169

Biorg. Med. Chem. Lett., 1996, 6, 1635

Synthesis of Macrocyclic Tripeptides

OF4949-III

Retrosynthesis for OF4949-III

Synthesis of O-Aryltyrosine

Synthesis of OF4949-III

Retrosynthesis for K-13

Synthesis of the Macrocyclic Precursor

Serine-Derived Reagent in THF

Solvent Dependence of NMR Spectra

Interpretation of ¹H NMR data

THF

- Broad signals
- Large chemical shift difference
- Different values for $J_{\rm AX}$ and $J_{\rm BX}$

DMF

Sharp signals Small chemical shift difference Similar values for J_{AX} and J_{BX}

Aspartic Acid-Derived Reagent in DMF

Kinetics of Decomposition

Znl CO₂Me

• Faster decomposition in THF than in DMF

 $\Delta H^{\ddagger} = \Delta S^{\ddagger}$

kJ mol⁻¹ J K⁻¹ mol⁻¹

- Simple first order kinetics in both THF and DMF
- Large negative ΔS[#] in THF indicating a highly ordered transition state

 $THF-d_8 + 70 - 85$

 $DMF-d_7 + 90 - 31$

Tentative Mechanism for Elimination

- Elimination proceeds *via* coordination of carbamate group to zinc, to give a highly ordered transition structure, hence the negative *entropy* of activation.
- THF interacts more weakly with the zinc than does DMF, as indicated by ¹H NMR. Thus, the disruption of DMF coordination to zinc in forming the transition structure also accounts for the higher *enthalpy* of activation in this solvent.
- The release of coordinated DMF partially compensates for the formation of the highly ordered transition structure, so the *entropy* of activation is less negative in this solvent.

Internal Coordination in Functionalised Organozinc Halides

¹³C NMR Data

• Chemical shift differences of the carbonyl groups of the β -amino zinc reagents in d₈-THF relative to the parent iodides.

$\Delta\delta \left(\delta_{(R-ZnI)} - \delta_{(R-I)} \right)$	MeO ₂ C Znl		NHBoc
Ester	+5.347	+1.464	+0.675
Carbamate	+ 2.711	+3.747	+3.923

¹³C NMR Data

• Chemical shift differences of the carbonyl groups of the β -amino zinc reagents in d₇-DMF relative to the parent iodides.

$\Delta\delta \left(\delta_{(R-ZnI)} - \delta_{(R-I)} \right)$	MeO ₂ C Znl	NHBoc E Znl CO-Me	NHBoc Znl
Ester	+5.786	+0.872	CO ₂ Me
Carbamate	-0.868	-0.535	-0.687

Unique Stability of Serine-Derived Reagent

• For the serine-derived reagent in all solvents, co-ordination of ester to zinc occurs.

How to Minimise the Elimination

- The elimination reaction appears to be dependent on the Lewis basicity of the carbonyl function, not its ability as a leaving group.
- Therefore, we need to choose a group in which Lewis basicity is minimised.

N-TFA Asp(OMe)-ZnI in d₇-DMF

4.6 1.1 4.2 4.0 3.8 3.6 3.4 3.2 2.2 2.0 3.0 2.8 2.4 1.8 1.6 1.4 1.2 2.6 1.0 0.8 0.6 0.4 (ppm)

Comparison of CH₂ZnI signals

Methylene protons for N-Boc Asp(OMe)-ZnI in DMF

0.50 0.30 0.40 (ppm)

Methylene protons for N-TFA Asp(OMe)-ZnI in DMF

Decomposition of Organozinc Reagents

Yields from Palladium-Catalysed Cross Coupling of β -Amidozinc Reagents

CO 2Me	DMF	Znl CO 2Me	$\frac{\text{Ar-I}}{\text{Pd}_2\text{dba}_3 / \text{P}(o\text{-tol})_3}$	Ar CO 2 Me
	Ar	P = Boc Yield (%)	P = TFA Yield (%)	
	4-Me-Ph	73	64	
	4-MeO-Ph	68	69	
	Ph	73	72	
	4-CN-Ph	-	77	
	1-Naphthyl	61	70	
	4-Br-Ph	58	53	

Jackson, R. F. W.; Rilatt, I. and Murray, P. J., Chem. Commun., 2003, 1242-1243.

Kinetic Behaviour of Organozinc Reagents

Organozinc Reagent	Rate of Decomposition (x 10 ⁻⁵ s ⁻¹)	Rate of Coupling (x 10 ⁻⁴ s ⁻¹)	Isolated Yield (%)
MeO NHBoc Znl	0.87	Too fast to measure	63
MeO NHTFA	0.31	20.6	65
	2.84	41.3	70
MeO Znl	0.33	62.5	88

Palladium-Catalysed Cross Coupling of β -Amidozinc Reagents

Reactivity of Organozinc Reagents

Organozinc Reagent	Rate of Decomposition (x 10 ⁻⁵ s ⁻¹)	Rate of Coupling (x 10 ⁻⁵ s ⁻¹)	Isolated Yield (%)
Ph Znl	1.1	Too fast to measure	74
Ph Znl	0.42	Too fast to measure	83
MeO ZnI	0.2	8.5	44

Applications of Reagents

R	Solvent	Reaction Rate (x 10 ⁻⁵ s ⁻¹)	Reaction Time	Isolated Yield (%)
Ph	DMF	0.5	> 16 h	65
Ph	THF/DMF(6 eq)	1.0	~ 16 h	72
C_6F_5	DMF	1.7	~ 8 h	81
C ₆ F ₅	THF/DMF(6 eq)	5.2	~ 3 h	94

Conclusions

- TFA reagents more stable to elimination
- · Ester coordination critical factor in reactivity
- · Glutamic acid trifluoroacetamide a superior reagent
- More acidic proton of the trifluoroacetamide tolerated

F. G. Bordwell, Acc. Chem. Res, 1988, 21, 456-463

Org. Biomol. Chem., 2004, 2, 110 - 113.

Acknowledgements

- Charles Dexter
- Manuel Perez-Gonzalez
- Christopher Hunter
- Ian Rilatt
- Luca Nolasco
- Lorenzo Caggiano
- Tomas Carrillo
- Paul Pickavance

Financial Support EPSRC

Astra Zeneca Dr R. Butlin Merck Sharpe and Dohme Dr J. Elliott SmithKline Beecham Dr H. Rami Medivir Dr U. Grabowska OSI Pharmaceuticals Dr J. Murray Commission of the European Union