Laboratory Automation for Process Research and Development

Joel M. Hawkins Chemical Research and Development Pfizer Global Research and Development

IASOC Conference Creativity in Organic Synthesis – From Target to Function Ischia, Italy September 20, 2004

Blend of Technology Development & Project Chemistry

1	Matrix of Auto Pharmaceutic	mation in al Process R&	&D
	Screen	Optimize	Characterize
Solution Chemistry	Many variables Many experiments Small scale Simulate flasks	Key variables Fewer experiments Maximize information Simulate large scale	Process safety Reaction engineering Process validation Pilots
Pressure Reactions	Many variables Many experiments Small scale Mixing still important	Key variables Fewer experiments Maximize information Simulate large scale	Process safety Reaction engineering Process validation Pilots
Crystallizations	Drug substance salt selection Intermediate resolution & purification	Yield Purity Robustness	Polymorph control Particle size Filtration rate Process validation
Software	Electronic lab note Overcome data an Universal instrume	ebook-automation interface alysis and visualization b ent 'wrapper' to minimize	ce oottleneck number of packages

Matrix of Automation in Pharmaceutical Process R&D

(1) Screening Solution Chemistry: Anachem SK233 / 215

Time (days)

Optimization and Robustness Testing

Starting point

• 5 mol% Pd₂(dba)₃ / 2 equiv. olefin / 10 equiv. TEA / *i*-PrOH / 85 °C Goal to reduce stoichiometry of:

- · Pd (to ease Pd removal)
- olefin (for cost)
- TEA (for workup)

Screened on the Anachem SK233

Screening on the Anachem

Decreased stoichiometries:

- Pd₂(dba)₃ from 5 to 1 mol%
- olefin from 2 to 1.1 equiv.
- TEA from 10 to 5 equiv.

Stressed to test robustness

- Water can be tolerated (at least to 20%).
- Residual phase transfer catalyst not a problem in fact, necessary!
- Residual 2-MeTHF not ideal; but 10-20% can be tolerated.

Scaled successfully 3 x 50 kg

Is the same technology optimal for both specialist groups and projects labs?

Screen

Chemistry Screening Project Labs

Argonaut AS 2410

Touch Screen Control

Profile Individual Temperatures

(2) Screening Pressure Reactions: Argonaut Endeavor

- 8 Pressure Reactors for H₂, CO, ...
- 5 mL Working Volumes
- Individual Temperature Control for Heating up to 200°C
- Individual Pressure Control up to 500 psi
- Good Mechanical Mixing 0-1000 rpm
- Individual Monitoring of Gas Uptake
- For Screening Reactivity vs. Catalysts, Solvents, Temperature ...

Simple in situ Measurement Related to Extent of Reaction

Pressure Transducer

PV = nRT

Hydrogen Uptake

Selective Partial Reductions

Maximize Selectivity

Minimizing Catalyst Loading

Horiuto-Polanyi Mechanism

Two Sites on Catalyst

Second Order Denominator

Curves Up

Eley-Rideal Mechanism

One Site on Catalyst

First Order Denominator

Linear at Saturation

(3) Solution Reaction Optimization: Mettler MultiMax

- Four Reactors
- Heating and Cooling
- Temperature Profiles
- "Easy Calorimetry" from T_r-T_i
- "A 'Rate Meter' for Every Flask"

Simple in situ Measurement Related to Extent of Reaction

Heat Flow Q Area of Heat Transfer A Heat Transfer Coefficient U Maintain Tr via Rapid Response of Ti

Two Accurate Heat Flow Rate Temp. Probes $Q = UA(T_r-T_i)$ $r = Q / V(-\Delta H_R)$

Optimization of TMSCI Stoichiometry and Add. Time

From 2.3 equiv. to 1.0 equiv. of TMSCI, 40 min. addition to avoid accumulation

Quantitative Rate Analysis and Kinetics

Simple Test Case

- Diels-Alder Reaction
- Second Order
 - First Order in Diene
 - First Order in Dienophile
- Homogeneous
- Clean
- Good Rate

Model Semi-Batch Reaction

CI

- Fit k to shape of T_r-T_i curve
- Scale factor $-\Delta H_R/U$
- Simple Numerical Methods (Excel)
- Use k to Predict Yield vs. Time for all Stoichiometries and all Addition Rates

Used First k to Predict Result of Different Add. Rates: Good Fits for T_r-T_j

Compositional Data from Heat Flow / Kinetics, FT IR, and HPLC

Dissemination of Automated Parallel Lab Reactors

Argonaut AS 3400

Control experimental parameters Mimic scale up Minimize extraneous variables Collect more data, e.g. calorimetry: "Rate meter" Safety data during route development Shared back plane for parallel reactions a series for optimization or totally independent Greater Quantity and Quality of Data

Heat Flow for Chemists for Preliminary Safety Data and as a "Rate Meter" X-CI

Dose controlled exotherm when base added at 70°C

Exotherms during base addition and while heating

Automated Laboratory Reactors

(4) Flow Chemistry

- All of the substrate and reagents experience the same reaction conditions
 - Better mixing, e.g. by rapid diffusion
 - Avoid local reagent excesses
 - Efficient heat exchange
 - Avoid local hot spots
- Only brief exposure to reactive environment
 - Avoid decomposition during long residence times during large scale batch reactions
 - High-energy intermediates generated in small quantities
 - Eliminate cryogenics by running at higher temperature
- "Scale-out" rather than scale-up
 - Number up and/or run for a longer time
 - Or scale up flow reactor dimensions maintaining mass and heat transfer so chemistry is scale independent
- Flow-into-flow for maximum plant efficiency

CPC Flow Reactor

Off the shelf

- · Continuous flow reactor
- Two pump-controlled reagent streams
 - 0.5-10 mL/min each
- Temperature-controlled reactor chamber (–70 to 230°C)
- Three removable 15 mL residence chambers
- Temperature-controlled product stream

Use as a screening tool to determine what chemistry within our portfolio is best suited for flow

Macroscopic Channels (300 µm)

Microscopic Diffusion Distances (<50 µm)

Application to the Portfolio

Known Chemistry

Chambers & Marfat Synth Commun 1997 515

candidate for flow chemistry

Known Selective Lithiations of 2,5-Dibromopyridine

- Regioselectivity depends on solvent
- Cryogenic (–78°C)
- Dilute (0.085 M) due to poor solubility at low temp

Wang et al *Tetrahedron Lett* **2000** 4335 O'Shea, Wang & Tillyer US 6,420,565

Initial Flow Chemistry with External Quench

0.75 M in toluene

6:1

- Non-Cryogenic (+5 vs. –78°C)
- More concentrated (0.75 M vs. 0.085 M)
- Can quench into ketone to form adduct -But, *lithiated* pyridine prone to precipitate and clog system

In situ Quench with Ketone

Metal/halogen exchange faster than BuLi addition to ketone

• Desired regioselectivity (9:1)

• 34% isolated: modest but fast and high throughput (35 g in 100 min)

Control Experiment in Batch

in situ lithiation and quench also works in batch

Would the Batch Reaction be Scalable?

- Initial experiments in a round-bottomed flask on a 1 g scale dosing BuLi via a syringe pump
- Variable regioisomer ratios (35-39% isolated yield)
- Reaction temperature increases vary with addition rate
- Wanted to achieve better control of reaction temperature and determine best BuLi addition rate for selectivity and a controllable heat output ⇒ automated reactor

Comparison of AS3400 and RC-1 Calorimetry Data

Conclusion

- Parallel reactions ⇒ response surfaces
- Systematic approach to hydrogenations
 - Catalyst libraries
 - DOE
- Automated reactors
 - Enhance reaction control
 - More data per experiment including heat flow
 - Value from simple yet sophisticated systems
- Flow reactors for new lab and plant efficiencies
- Blend physical organic chemistry, chemical engineering, and analytical chemistry with synthetic organic chemistry to solve process problems

Acknowledgements

Jennifer Rutherford Teresa Makowski Jason Mustakis Kris Jones Barb Sitter Nga Do Sue Orrill Dave Bill Jerry Weisenburger Frank Urban Bob Handfield