Thrombin and factor VIIa

IASOC XII

"Structure-based Organic Synthesis of Drug Prototypes"

Stephen Hanessian

University of Montreal, Canada University of California, Irvine, USA

- · Members of the family of serine proteases
- Thrombin holds central position in the final steps of the blood coagulation cascade
- Factor VIIa holds a major role in the extrinsic pathway
- They both regulate hemostasis
- Lead to the conversion of Fibrinogen to Fibrin
- ٠ Stimulate platelets aggregation
- Current treatments \rightarrow side effects

Reviews: Clin. Appl. Thrombosis/Hemostasis 2001, 7, 195-204 Am. Heart J. 2001, 142, S3-8 Exp. Opin. Invest. Drugs 2001, 10, 845-864 Current Medicinal Chemistry 1998, 5, 289-304

thrombin: 18 nM

thrombin: 2 550 nM

·HCI

S. Hanessian, E. Balaux, D. Musil, L. L. Olsson, I. Nilsson, I.Bioorg. Med. Chem. Lett. 2000, 10, 243;

- S. Hanessian, E. Therrien, K. Granberg, I. Nilsson, Bioorg. Med. Chem. Lett. 2002 12, 2907;
- S. Hanessian, H. Sailes E. Therrien, Tetrahedron 2003, 59, 7047:
- S. Hanessian, A. Munro, H. Sailes E. Therrien, J. Org. Chem. 2003, 68, 7219.

Bioactive Compounds Produced by Cyanobacteria

•Isolated from the blue-green algae Microcystis aeruginosa Thrombin and trypsin inhibitors

Reviews: H. Leusch. et al Curr. Med. Chem. 2002. 9, 179. M. Murakami, et al Tetrahedron 1999, 55, 10971 M. Namikoshi, K. L. Rinehart, J. Indust. Microbiol. 1996, 17, 373.

Biological Results

Oceans Apart

New Aeruginosins from Oscillatoria agardhii

S. Hanessian et al, J. Am. Chem. Soc. 2004, 126, 6064.

Disconnection

ŇΗ₂

(2R,3R)

 $\overline{N}H_2$

(2R,3S)

3-Chloroleucine and 3-Hydroxyleucine

A Synthesis of 3-Chloroleucine

One known synthesis of racemic amino acid (Shive et al.):

3-Hydroxyleucine synthesis:

Caldwell, C. G. and Bondy, S. S. Synthesis 1990, 35.

J. Zhu, et al. J. Org. Chem. 1998, 63, 1709.

J. Bonjoch, et al. Tetrahedron Lett. 2006, 47, 3701.

Aziridine Opening

Attempted Cleavage with Magnesium Chloride:

With Cerium Chloride:

Opening of N-Sulfonyl Aziridines

Regioselective Opening of N-Bus Aziridine

Assembly of the N-Terminal Fragment

Oxidations

Octahydroindole Synthesis (Azonia-Prins)

Reider, P. et al. Tetrahedron Lett. 1998, 39, 85323.

Octahydroindole Synthesis

Synthesis of the Pyrroline Subunit

S. Hanessian, R. Margarita, A. Hall, S. Johnstone, M. Trembaly, L. Parlanti, J. Am. Chem. Soc. 2002, 13342.

Assembly of Chlorodysinosin A

The "Magic" Chlorine Atom?

S. Hanessian, J. R. Del Valle, Y. Xue, N. Blomberg, J. Am. Chem. Soc. 2006, 128, 10491

Topochemical Effect

 3-CI fills the S3 site with release of water from the enzyme pocket (an entropic gain).