

XXIst European Colloquium on Heterocyclic Chemistry September 12-15, 2004 Sopron Hungary

SYNTHESES OF ARCHITECTURALLY NOVEL METALLAHETEROCYCLES VIA ALKENE and ALKYNE METATHESIS (from insulated molecular wires to molecular gyroscopes)

Eike Bauer, Takamori Shima, J. A. Gladysz, and other coworkers

Institut für Organische Chemie Universität Erlangen-Nürnberg

XXI. European Colloquim on Heterocyclic Chemistry Sopron, Hungary September 13, 2004

(metathesis catalyst, Bavarian style)

FIRST EXAMPLES, C=C METATHESIS IN METAL COORDINATION SPHERES

Alvarez Toledano, C.; Parlier, A.; Rudler, H.; Daran, J.-C.; Jeannin, Y. J. Chem. Soc., Chem. Commun. 1984, 576. Alvarez, C.; Pacreau, A.; Parlier, A.; Rudler, H.; Daran, J.-C. Organometallics 1987, 6, 1057.

SOME EARLY EXAMPLES, C=C METATHESIS IN METAL COORDINATION SPHERES

R.W. Heo, F.B. Somoza, T.R. Lee, J. Am. Chem. Soc. 1998, 120, 1621

G. Rapenne, C. Dietrich-Buchecker, J.-P. Sauvage, J. Am. Chem. Soc. 1999, 121, 994

TOWARDS a RATIONAL DEVELOPMENT of the FIELD: CONCEPTUAL TYPES of C=C METATHESIS in METAL COORDINATION SPHERES

charged/neutral complexes; coordinatively saturated/unsaturated complexes; octahedral/square planar/etc. complexes

A: Joining Two Complexes

$$M \rightarrow 0^{-} + 0^{-} + 0^{-} + 0^{-} + 0^{-} - 0^{-} + 0^{-} - 0^{-} + 0^{-} + 0^{-} - 0^{-} + 0^{-}$$

JOINING TWO COMPLEXES; CYCLIZATION WITHIN A LIGAND

CYCLIZATION WITHIN ONE LIGAND - LARGE RINGS

CYCLIZATION BETWEEN TWO c is -LIGANDS

CYCLIZATION WITHIN TWO *c* is -LIGANDS; SQUARE PLANAR PLATINAMACROCYCLES

MACROCYCLIZATIONS: KEY CONFORMATIONS and POSSIBLE "DRIVING FORCE"

CYCLIZATION BETWEEN TWO trans-LIGANDS

EFFECT OF MACROCYCLE RING SIZE

all Pt-P-C-C conformations gauche; all P-C-C-C conformations anti

five, three, five, and four C-C-C gauche segments

EXCHANGE OF DIASTEREOTOPIC GROUPS REQUIRES ROTATION of MACROCYCLE over a Pt-XLIGAND

enantiotopic: H_a and H_d ; H_b and H_c ; Ph_a and Ph_d ; Ph_b and Ph_c diastereotopic: H_a with H_b and H_c ; H_b with H_a and H_d ; H_c with H_a and H_d ; H_d with H_c and H_b ; phenyl groups analogous

the rotation I \rightarrow II exchanges diastereotopic groups H_b and H_d, and H_a and H_c, and analogous phenyl groups

10 methylene groups (13-membered ring): $\Delta G^{\ddagger} > 17.4 \text{ kcal/mol} (95 °C)$ 14 methylene groups (17-membered ring): $\Delta G^{\ddagger} < 8.4 \text{ kcal/mol} (-90 °C)$

distance from platinum to remote carbon of macrocycle: 5.62 Å and 7.83 Å subtract van der Waals radius of carbon: 3.92 Å and 6.13 Å platinum-carbon bond length: 2.36 Å add van der Waals radius of chlorine: 4.14 Å

CONTROL EXPERIMENTS and LITERATURE PRECEDENT

CYCLIZATION BETWEEN TWO trans-LIGANDS, Each With Two Alkenes

crude reaction mixture shows some diplatinum product

INDEPENDENT SYNTHESIS of ALTERNATIVE MACROCYCLIZATION PRODUCT

intermolecular metathesis)

CRYSTAL STRUCTURE OF SYN ISOMER

molecule has idealized C_{2v} symmetry (homotopic PPh groups; seven CH₂ ¹³C NMR signals) macrocycle conformation similar to mono-bridged species

CRYSTAL STRUCTURE OF ANTI ISOMER

molecule has idealized C₁ symmetry (diastereotopic PPh groups with distinct NMR signals; up to 28 CH₂ ¹³C NMR signals) macrocycle conformation very different from syn isomer (one anti Pt-P-C-C segment, six gauche C-C-C-C segments)

OTHER DICYCLIZATION REACTIONS

two and three methylene groups

DIMACROCYCLIZATION TO DOUBLY TRANS-SPANNING DIPHOSPHINE

four methylene groups

DIMACROCYCLIZATION TO DOUBLY TRANS-SPANNING DIPHOSPHINE

five and eight methylene groups

NEXT GENERATION TARGET: A "MOLECULAR GYROSCOPE"

SPECIAL FEATURES OF TARGET MOLECULES

rate of rotation or "gyroscope spinning" can be probed by dynamic NMR

removal of metal would selective give difficult-to-obtain in-in isomer of bridgehead diphosphine

INITIAL EXPERIMENTS ARE DISASTERS

SECOND GENERATION APPROACH TO ORGANOMETALLIC GYROSCOPES

HYDROGENATION PROCEEDS SMOOTHLY IN A STEP WISE MANNER

the methylene bridge length may be increased:

FIRST CRYSTAL STRUCTURE OF GYROSCOPE-TYPE COMPLEX

Side view

crystal packing of gyroscope type complex

(rotator axes are aligned)

View from b axis

View from *a* axis

RELATED MACROCYCLIZATIONS

Crystal Structure of Doubly-Bridged Complex

Distance from iron to remote carbon of macrocycles: 5.40 and 5.54 Å Subtract van der Waals radius of carbon: <u>3.84 and 3.71 Å</u> Fe-C-O bond length: 2.93 Å Add van der Waals radius of oxigen: <u>4.45 Å</u>

REACTIONS OF GYROSCOPE MOLECULES

two sets of CH=CH protons and carbons (2:1, RT and 80 CC)

n = 4 (ten methylene groups) ¹³C NMR spectrum shows two bridges (2:1) n = 5 (twelve methylene groups) ¹³C NMR spectrum shows two bridges (2:1) n = 6 (fourteen methylene groups) ¹³C NMR spectrum shows one bridge

THIRD GENERATION APPROACH TO ORGANOMETALLIC GYROSCOPES

square planar complexes with two small ligands

CRYSTAL STRUCTURE of PdBr₂ GYROSCOPE

TOWARDS OTHER ARCHITECTURALLY SOPHISTICATED TARGETS

CARBON CHAIN COMPLEXES FROM trans-SPANNING PHOSPHINE COMPLEX; synthesis of an authentic sample of a possible by-product

METATHESIS of DIPLATINUM TETRAOLEFIN

96% yield of "analytically pure" mixture ³¹P NMR shows five major peaks (64:11:8:9:8)

FIRST SYNTHESIS OF TARGET MOLECULE

93% overall yield for two steps; mass spectra show only expected molecular ion but ³¹P NMR spectra sometimes show more than two peaks; preparative TLC gives the "protected chain" complex in 32% yield

VIEWS OF THE PPh_2 BASED DOUBLE HELIX

INTRODUCTION of GEMINAL DIMETHYL GROUPS

PtC12Pt SERIES: OLEFIN METATHESIS APPROACH TO DOUBLE HELIX

ALKYNE METATHESIS in METAL COORDINATION SPHERES

ALKYNE METATHESIS in METAL COORDINATION SPHERES effect of catalyst

TRIPLE MACROCYCLIZATION to TRIPHOSPHINE, DIPHOSPHINE, and tris(MONOPHOSPHINE) COMPLEXES

NMR and mass spectra show no remaining = CH_2 still a multitude of isomers after hydrogenation (94%) mass spectra show all three types of ligands (P3, P2, P1)

syn, anti, anti

Hydrogenation (H₂ (90 psi) / (Ph₃P)₃RhCl / toluene) leads to a mixture of isomers in 94% yield

CONCLUSION: ALKENE (AND ALKYNE) METATHESIS OFFERS INCREDIBLE OPPORTUNITIES FOR THE SYNTHESIS OF ARCHITECTURALLY NOVEL ORGANOMETALLIC COMPOUNDS

Martinez, V.; Blais, J.-C.; Astruc, D. Angew. Chem. Int. Ed. 2003, 42, 4366.

review: Bauer, E.; Gladysz, J. A. "Handbook of Metathesis", R. H. Grubbs, Ed. 2003

METATHESIS TEAM 2003-2004 Mr. Eike Bauer and Dr. Takamori Shima

financial support: DFG

POSSIBLE ROUTE to a DIRHENIUM "SINGLE HELIX"

three ³¹P NMR signals

CRYSTAL STRUCTURES OF THE RHENAMACROCYCLES

CYCLIZATION WITHIN TWO cis-LIGANDS PLATINUM-THIOETHER MACROCYCLES

(after column chromatography) Scheme 6. Selected conformational equilibria.

(A) Representative equilibria in cis-bis(phosphine) complex 12

Ph H H Ph

more productive for macrocyclization

(C) Equilibria for trans-bis(phosphine) complexes 3a-e with C₆H₅/C₆F₅/C₆H₅ stacks.

MACROCYCLIZATION of a SUBSTRATE with GEMINAL DIMETHYL GROUPS

CRYSTAL STRUCTURE of TRANS-SPANNING PHOSPHINE COMPLEX

THE FIRST CH=CH₂/CH=CH₂ METATHESIS SETS THE SYN/ANTI MANIFOLD

mass spectrometry of the crude reaction mixture shows some diplatinum product

the anti manifold may be more oligomerization prone