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Palladium- and Nickel-Catalyzed Cross-Couplings:
Going Beyond the Formation of Csp2–Csp2 Bonds

Most studies have focused on
carbonŠcarbon bond formation between sp2-hybridized carbons
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"AlkylŠalkyl cross-coupling reactions have historically been
the most difficult to realize"

Metal-Catalyzed Cross-Coupling Reactions (de Meijere, Diederich; Wiley-VCH: 2004)
the most difficult to realize

Palladium-Catalyzed Cross-Coupling of Alkyl Electrophiles: 
Background

There are relatively few reports of cross-couplings of alkyl electrophiles
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Activated electrophiles that lack β hydrogens are suitable substrates:

Xe.g.,



Pd- and Ni-Catalyzed Cross-Coupling
of Unactivated Alkyl Electrophiles: State of the Art in 2000
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�  Suzuki reactions: Suzuki (1992)
3% Pd(PPh3)4

R I (9-BBN) R1 R
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(9-BBN) Ph

3% Pd(PPh3)4

K3PO4, dioxane, 60 �C

and : also suitable substrates(9-BBN) (9 BBN) Phand : also suitable substrates(9 BBN)

�  Negishi reactions: Knochel (1995)
10% Ni( )
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10% Ni(acac)2
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Copper-, cobalt-, and iron-catalyzed cross-couplings of alkyl electrophiles
with Grignard reagents have been reportedwith Grignard reagents have been reported

For a review and leading references on progress since 2000 (by many groups), see:

Angew. Chem., Int. Ed. 2009, 48, 2656–2670 (Lautens)

Alkyl–Alkyl Cross-Coupling: Some of the Challenges
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Palladium-Catalyzed Suzuki Cross-Couplings
of Alkyl Bromides with Alkylboranes: Ligand Effects on Reactivity
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Suzuki Cross-Couplings of Alkyl Bromides
Catalyzed by Pd/PCy3 at Room-Temperature 
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Alkyl chlorides are also suitable coupling partners (90 �C)

Matt Netherton, Klaus Neuschuetz

Alkyl chlorides are also suitable coupling partners (90 �C)



Pd/PCy3-Catalyzed Suzuki Cross-Couplings of Alkyl Bromides: 
Applications to Fragment Coupling in Synthesis (Phillips)
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Suzuki Cross-Couplings of Alkyl Bromides:
Mechanistic Observations

4% Pd(OA )

(9-BBN) RRalkyl Br Ralkyl R

4% Pd(OAc)2
8% PCy3

1.2 K3PO4 � H2O

Reactions are not moisture-sensitive:
the presence of water leads to a faster reaction

�
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the presence of water leads to a faster reaction
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(cf. Soderquist)
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� The resting state of the catalytic process appears to be Pd(PCy3 )2

Matt Netherton

Suzuki Cross-Couplings of Alkyl Bromides: 
Facile Oxidative Addition to Pd(PCy3)2
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Br� oxidative addition involves PdL2
� β-hydride elimination involves PdL1

Matt Netherton, Klaus Neuschuetz

Suzuki Cross-Couplings of Alkyl Tosylates:
Dependence of Reactivity on Phosphine Structure
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air stable P(t-Bu)2 Me
(available from Strem, Aldrich)

provides the best catalyst

air-stable
[HP(t-Bu)2 Me]BF4
(Strem, Aldrich)
can also be used

Matt Netherton



Suzuki Cross-Couplings of Alkyl Tosylates
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Suzuki Cross-Couplings of Alkyl Tosylates: Mechanism
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What is the stereochemistry of the oxidative addition step?
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Suzuki Cross-Couplings of Alkyl Tosylates: 
Mechanism of Oxidative Addition
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Reactions of alkyl bromides
also proceed with predominant

inversion of configuration In the absence of a coupling partner,

elimination

Matt Netherton

inversion of configuration
β-H/β-D elimination occurs

Oxidative Addition to PdL2:
Rate as a Function of the Trialkylphosphine
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DFT Calculations (B3LYP): 
The Difference Between P(t-Bu)2Et and P(t-Bu)2Me
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Nickel-Catalyzed Cross-Couplings of Alkyl Electrophiles:
Broader Scope and Asymmetric Reactions
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Nickel-Catalyzed Cross-Couplings of Secondary Alkyl Bromides: 
Negishi Reactions at Room Temperature
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Nickel-Catalyzed Negishi Cross-Couplings
of Secondary and Primary Alkyl Bromides and Iodides
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Nickel-Catalyzed Negishi Reactions of Secondary Alkyl Halides:
Use by Others

Synthesis of C-alkyl glycosides (Gagne 2007)Synthesis of C-alkyl glycosides (Gagne, 2007)
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Asymmetric Cross-Couplings of Secondary Alkyl Halides:
Stereoconvergent Negishi Reactions of α-Bromoamides
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� NiCl2  � glyme and (R)-(i-Pr)-Pybox: commercially available

Christian Fischer

� Can be run under air

Nickel-Catalyzed Suzuki Cross-Couplings
of Primary and Secondary Alkyl Electrophiles
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M = boron ??

Nickel-Catalyzed Suzuki Reactions of Secondary Alkyl Bromides
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Suzuki Reactions of Secondary and Primary Alkyl Electrophiles
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B NMR: δ 194%

Asymmetric Suzuki Cross-Couplings:
Unactivated Secondary Alkyl Electrophiles as Substrates?
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For M = Zn (Negishi): = activated electrophile for asymmetric reactions:

� α-halocarbonyl
� ll li h lid

X

� allylic halide
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Asymmetric Suzuki Reactions of Unactivated Alkyl Halides:
Homobenzylic Bromides as Electrophiles

(9-BBN) alkylalkyl alkyl1

Br

lk l lk l1
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Asymmetric Cross-Couplings of Secondary Electrophiles 
with Vinyl- and Arylmetal Reagents
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Catalytic Asymmetric Negishi Reactions:
Arylations of Propargylic Bromides
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Palladium- and Nickel-Catalyzed
Cross-Couplings of Alkyl Electrophiles
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Current efforts: � more versatile catalysts
� asymmetric processesy p
� mechanism studies


