

Syntheses Using the Oxiranyl Anion Methodology

Saverio Florio

Dipartimento Farmaco-Chimico, Università degli Studi di Bari - Italy

florio@farmchim.uniba.it www.farmchim.uniba.it/chimica_organica

IASOC-2006

α-Lithiated Oxiranes

Eisch, Molander, Pfaltz, Yamakawa, Satoh, Mori, Jackson, Doris and Dechoux, Hodgson, Malacria, Uneyama, Florio (nineties) Under investigation:

-generation

-nature (carbanion or carbenoid)

-chemical and configurational stability

-stereochemistry

Reviews and Accounts:

 Satoh,
 Chem. Rev. 1996, 96, 3303

 Mori,
 Rev. Heter. Chem. 1997, 17, 183

 Hodgson,
 Synthesis, 2002, 12, 1625

 Hodgson,
 Synlett 2006, 1-22

 Florio,
 Tet. Symposia in Print, 2003, 9713

 Florio,
 Synlett 2005, 9, 1359-1369

 Chemlà,
 The Chemistry of Organolithium

 Compounds, Patai, 2004, Vol. 2, chap. 18

Multifaceted Reactivity of Oxiranyllithiums: Carbanions and Carbenoids

2-Ene-1,4-diols by Dimerization of Terminal Epoxides

Oxiranyl anion methodology: synthesis of the natural product Xialenon A

Oxiranyl anion mediated cyclopropanation: synthesis of (–)-Sabina ketone

Precursor of important flavor chemical found in a variety of essential oils.

Silicon-Stabilized Oxiranyl Anions: Total Synthesis of Cerulenin

Mani, N. S. et al., J. Org. Chem. 1997, 62, 636

Synthesis of Spatol Analogues

Salomon, R. G. *Terahedron Lett.* **1994**, 35, 517

Oxiranyl anion methodology: Iterative synthesis of the ABCDEF-ring system of yessotoxin

Carbonyl-stabilized oxiranyl anions

"Oxazolinyloxiranyllithiums particularly promising"

G. Molander, Pure & Appl. Chem. 1990, 62, 707-712

α-LITHIATED OXAZOLINYLOXIRANES

-very easy generation (THF, s-BuLi/TMEDA),
-high chemical stability,
-amenable to synthetic elaboration

Oxazoline-Stabilized Oxiranyllithiums

Regio and Stereospecific Deprotonation-Trapping of *cis***Oxazolinyl Epoxides**

E⁺ = D_2O , MeI, PhCHO, MeCHO, Et_2CO **60-95% Yields** *R**,*S**/*R**,*R** ratio: 80/20 - 95/5

J. Org. Chem., 2001, 66, 3049 - 3058

Regio and Stereospecific Deprotonation-Trapping of *trans*-Oxazolinyl Epoxides

Lithiation of Chiral Oxazolinyloxiranes

• α-Lithiated Oxazolinyloxiranes are configurationally unstable

Tetrahedron. **2003**, 9707

β-Amino Acids

-present in natural products
 -exhibit important biological properties
 -valuable chiral building blocks for the asymmetric construction of β-lactam antibiotics
 -incorporated into biologically active molecules enhance bioactivity and can probe mechanisms of action

Retrosynthetic Approach to α-Epoxy-β-Amino Acids: Combining the Oxiranyllithium Methodology with the Chemistry of Nitrones and Oxazolines

Reaction of Lithiated Oxazolinyloxiranes with Nitrones

Synthesis of α-Epoxy-β-Amino Acids

R	R^1	Oxazolidinone	Amino Acid
		Yield %	Yield %
Me	Ph	68	98
""	$p-MeOC_6H_4$	85	98
""	$p-CF_3C_6H_4$	90	98
Et	Ph	72	98
-(CH ₂) ₅ -	Ph	61	98

Enantioselective Synthesis of \alpha-Epoxy-\beta-Amino Acids

β-LITHIATED OXAZOLINYLOXIRANES

-very easy generation
-Chemically and configurationally stable !
-synthetically useful

γ-Amino Acids

Stereoselective Synthesis of α,β-Epoxy-γ-Amino Acids and α,β-Epoxy-γ-Butyrolactams

Enantioselective Synthesis of 4,5-Epoxy-1,2-Oxazin-5-ones

Cyclopropane-γ-lactones: Useful Precursors of Biologically Important Target Molecules

Synthesis of Cyclopropane-γ-lactones, precursors of cyclopropane-γ-amino acids

J. Org. Chem. 2004, 69, 9204

Yield of Pentacarbonyl(3-oxa-2-bicyclo[3.1.0] hexylidene)-Tungsten Complexes Cyclopropanation of Lithiated Oxazolinyloxiranes with Fischer Carbene Complexes: Synthesis of Cyclopropane-γ-lactones

J. Org. Chem. 2004, 69, 9204

Stereoselective Synthesis of α , β -Epoxy- γ -Butyrolactones

Enantioselective Synthesis of α , β -**Epoxy**- γ -**Butyrolactones**

Regioselective lithiation of terminal Oxazolinyloxiranes

Regioselective lithiation of terminal Oxazolinylaziridines

Lithiated Aryloxiranes:

-Chemically and configurationally stable

-Synthetically useful

Lithiated Aryloxiranes

Lifetime : 30 min-2h

Chemically and configurationally stable

 R^1 , $R^2 = H$, Me, Ph, 2-oxazolin-2-yl

Trapping of *ortho***-lithiated N-methylphenylaziridine**

E⁺ = D₂O; CH₃I; CH₃CH₂I; CH₂=CHCH₂Br; PhCH₂Br; MetallyICI (CH₃)₂CO; PhCON(CH₃)₂; PhCHO; Cyclopentanone; **Yields:** 51 – 98 %; dr: > 98:2; er = 97:3 – 99:1

Org. Lett. 2002, 2445

J. Org. Chem. 2004, 3330

Lithiated Aryloxiranes:

-Are they carbanions or carbenoids?

-Does the aryl group provide stability to the lithiated oxirane?

-Chemical Experiments -Ab initio Calculations

Transition State Model of the Reaction of α-Lithiated Styrene Oxide with RLi in <u>Non-Donor Solvents and in the Absence of Ligands</u>

The bridging Li could help to cleave the C–O bond "Metal-Assisted Ionization" Lithiated Styrene Oxide might be "Terminally Bonded" in <u>Good Donor Solvents and in the Presence of Ligands</u>

Donor solvents (e.g. THF) and ligands (e.g. TMEDA) could compete successfully with Li–C–O bridges favouring tetrahedral isomers with "less carbenoid" character.

Lithiated Styrene Oxide: a Multinuclear NMR Investigation

Stereospecific Deprotonation of Styrene Oxides

Optically active Styrene Oxide is not an Asymmetry Inductor

Org. Lett. 2002, 2445

Stereoselective Synthesis of 4-Hydroxymethyl-1,2-oxazetidines

Org. Lett. 2006, 8, 3923-3926

Asymmetric Synthesis of 1,2-Oxazetidines

a) Reaction performed at room temperature

Org. Lett. 2006, 8, 3923-3926

Triazole Antifungal Agents

Synthesis of an Optically Active Triazole Antifungal Agent

ĊI

[α]_D = +113.5 lit. [α]_D = +117.3

ČΙ

er > 99%

Org. Lett. 2002, 2445

Synthesis of Optically Enriched Cyclopropanes

Cyclopropanation Reaction of Optically Active Lithiated *trans*-Phenylpropylene Oxide with Fischer Carbenes

Cyclopropanation Reaction of Lithiated *cis***- Stylbene Oxide** with Fischer Carbenes

J. Org. Chem. 2005, 70, 5852-5858

Deprotonation of *trans*-**Stilbene Oxide**: *ortho*-**Lithiation vs.** α-**Lithiation**

Lithiation of *trans*-Stilbene Oxide : Alpha vs Ortho

Enantiospecific Synthesis of Tetrahydronaphthols

Enantiospecific Synthesis of Dihydrobenzo[c]furans (Phthalans)

J. Org. Chem. 2006, 71, 3984-3987

α-Lithiation of trans-N-Alkyl-2,3-diphenylaziridines: Stereospecific Synthesis of functionalized Aziridines

E	dr Cis/Trans	Yield %
Ме	> 98/2	98
Et	> 98/2	92
Bn	> 98/2	70
Allyl	> 98/2	92
1	> 98/2	48
	> 98/2	38

Selected NOE interaction

Unpublished results

α-Lithiation of trans-N-Alkyl-2,3-diphenylaziridines: Stereospecific Synthesis of functionalized Aziridines

E+	dr Trans/Cis	Yield %
Mel	> 98/2	64
Etl	> 98/2	95
SnBu ₃ Cl	> 98/2	80

Selected NOE interaction

Unpublished results

Isomerization of Oxazolinyl Aryl Oxiranes: Synthesis of Oxazolinylarylalkanones

Tetrahedron Lett., 2002, 43, 7739

Isomerization of Oxazolinyl Aryl Oxiranes: Synthesis of Oxazolinylarylalkanones

Synthesis of Substituted Isoquinoline Derivatives

Synthesis of Substituted Isoquinoline Derivatives

Mechanistic Hypothesis

Acknowledgements

Prof. V. Capriati Prof. R. Luisi Dr. L. Degennaro Dr. F. M. Perna Dr. A. Salomone

PhD Students: Dr. I. Nuzzo Dr. B. Musio Dr. R. Mansueto Dr. C. Carlucci **MIUR, FIRB C.I.N.M.P.I.S DOMPE' (L'Aquila) ANGELINI (Pomezia)**

Dr. P. Di Cunto

Lithiated Styrene Oxide: a Computational Investigation at DFT Level

Oxazolinyloxiranyllithium: Carbanion or Azaenolate? -An IR-Spectroscopic Study-

α-Lithiated Oxazolinyloxiranes: an *in situ* React-IR Investigation

Wavenumber (cm -1)

Unpublished results

Trapping of *ortho***-lithiated N-methylphenylaziridine**

R³R⁴CO: $(CH_3)_2CO$ (89 %), PhCHO (47 %, dr = 1:1), Ph₂CO (52 %), *n*-PrCOPh (55 %, dr = 1:1)

