Vittorio Farina, IASOC 9/19/04

PRACTICAL SYNTHESIS OF NEW INVESTIGATIONAL THERAPEUTICS

Development of a scalable synthesis of BILN 2061, a novel HCV Protease inhibitor

Dept. of Chemical Development, Boehringer Ingelheim, Ridgefield CT

Therapeutic Need

- Over 170 million people are infected with hepatitis C virus (HCV) worldwide (WHO 1997).
- > 70% of infected individuals will develop chronic hepatitis C. Chronic hepatitis C is a progressive condition leading to end-stage liver disease (cirrhosis and hepatocellular carcinoma).
- Available interferon-containing therapies have limited efficacy and have significant side effects.

- Interferon α or β (subcutaneous administration).
- Rebetron: Intron A + oral ribavirin, launched in 1998 (USA).
 - New standard therapy: 50% sustained response rate (genotype I virus).
 - Treatment cost: ~ \$17,000/year (\$1,440/month) per patient.

Hepatitis C Virus NS3 Protease

•Cleaves at NS3/4A; NS4A/4B; NS4B/5A and NS5A/5B. Good medicinal target.

•In *in vitro* assays, it was found that protease is inhibited by a hexapeptide (N-terminal) produced by cleavage of substrate from NS5A/5B [DDIVPC].

•This can be the basis for rational drug design.

•Rapid peptide screening shows: DDIVPC $IC_{50} = 71 \mu M$ DdIVPC $IC_{50} = 4 \mu M$ (replaced L-Asp with D-Asp)

M. Llinàs-Brunet et al. Bioorg. Med. Chem. Lett. 1998, 8, 1713

M. Llinàs-Brunet et al. Bioorg. Med. Chem. Lett. 2000, 10, 2267

From Peptides to Peptidomimetics

BILN 2061 Clinical Candidate

Reversible inhibitor of HCV genotype Ia and Ib, $K_i = 0.3-0.66$ nM. Good PK, metabolic stability.

Boehringer

Ingelheim

Structure-Activity Relationships:

Angew. Chem. Int. Ed. Engl. 2003, 42, 1356 J. Med. Chem. 2004, 47, 123 J. Med. Chem. 2004, 47, 1605 J. Med. Chem. 2004, 47, 2511 Nature 2003, 426, 186

Discovery Synthesis: Org. Lett. 2004, 4, 2901.

•Administered in solution (Water, PEG 400, EtOH) at 200 mg bid, for 2 days.

•Viral titer dropped from an average of 10⁶ copies/mL to <1,500 (LOD) in most patients.

•Viral titer rebounded in 6-13 days after treatment was discontinued (as expected).

H. Hinrichsen et al. Gastroenterology, in press.

BILN 2061: Retrosynthetic Analysis

C₄₀H₅₀N₆O₈S MW 774.95 5 Asymmetric Centers (Z) -Alkene 15-Membered Ring

Boehringer Ingelheim

Amenable to convergent assembly

Program Goals

• Develop "Expedient Route" in order to supply early batches for toxicology and phase Ia studies (0.5 – 1.0 Kg).

• Develop cost-effective "**Practical Route**" and develop it into a process that can form the basis for commercial manufacturing:

- Highly Reproducible.

INRF1 (P2)

- No chromatographies.
- Control of all organic impurities > 0.1 %.
- Control of all residual organic volatiles (ICH guidelines).
- Control or inorganic impurities (Ru?).
- Control of solid-state properties of Active Pharmaceutical Ingredients (API) (polymorph, crystal habit, particle size).

N.G. Anderson "*Practical Process Research and Development*", Academic Press, San Diego, **2000**.

Ingelheim **Estimating Capacity Costs: Throughput**

- Volume/Time Requirement in m³ x h / tons VTR = (the lower the better)
- Utilizable volume of reactor (m³) =
- Ts Standard time needed on bottleneck reactor or = operation (h)
- Os Output per batch (tons) ----
- TG Product change time =
- Operating factor (\leq 1); covers deviations from 24 h F = 7/7 work routine, lack of materials, operators, equipment downtime, etc.

$$VTR = \frac{V}{O_{S}} \left(\frac{T_{S}}{F} + T_{C} \right)$$

The BILN 2061 Chemistry Team

Boehringer (I) Boehringer Ingelheim

Boehringer

BIPI Process Chemistry

Dr. Nathan Yee Dr. Yannis Houpis Dr. Vittorio Farina Dr. Nizar Haddad Dr. Rogelio Frutos Dr. Fabrice Gallou Dr. Xiao-jun Wang Dr. Xudong Wei Dr. Robert Simpson Dr. XuWu Feng Victor Fuchs Yibo Xu Ionathan Tan Li Zhang Jinghua Xu Lana Smith **Jana Vitous** Earl Spinelli

BIKG Ingelheim, Process Dr. Wolfgang Dersch Dr. Wendelin Samstag Dr. Thomas Nicola Dr. Kai Donsbach

BIKG Biberach, Process Dr. Volker Ehrig Dr. Rolf Herter Dr. Juergen Schnaubelt Dr. Rainer Soyka

Dr. Pierre Beaulieu Dr. Anne-Marie Faucher Dr. Youla Tsantritzos Dr. Montse Llinàs-Brunet Dr. Murray Bailey Dr. Stephen Kawai Dr. Bruno Simoneau Dr. Jean-Marie Ferland Christian Brochu lean-Simon Duceppe Elise Ghiro Vida Gorys Ted Halmos Martin Poirier lames Gillard Bruno Haché Colette Boucher

BI Laval Discovery Chemistry

Synthesis of Racemic P1 Unit

Route to P1: Optimization

Boehringer Ingelheim

Imine: Benzaldehyde best (selected).

Counterion effect (tBuO base) on diastereoselectivity: Li > Na > K (d.e.=20:1 with Li, 10:1 with Na, 2:1 with K).

Solvents: Non-polar solvents (PhMe) give best yields.

Esters: Et best, Me 5-8% lower yield.

Concentration: No difference in yield over practicable range (0.28-0.7 M).

<u>Temperature</u>: No difference in range **20-45** °C . No improvements at lower temperature, just prolonged reaction times.

P1:Scalable Process

Process Chemistry, Ridgefield and BIKG Biberach

P3 Unit: Discovery Synthesis

- Preparation of 2 using 1,4-dibromobutane gives lower yield in Grignard coupling.
- Recycle of (R)-3 possible by racemization with Ac₂O at reflux followed by resolution as above (71% total yield after one recycle).
- DCHA salt used for crystallinity. Process smoothly scalable to >100 Kg.

• Literature procedure: J. Org. Chem. 1979, 44, 578; J. Am. Chem. Soc. 1978, 100, 4842.

• Reported yield: 40%. Obtained on 300g scale: 35%.

• Difficulty in scale-up due to further reaction (decomposition) of **1** and emulsions during work-up.

• *m*-Anisidine is a very attractive starting material.

Discovery Chemistry, Laval, and Process Chemistry, Ridgefield

- Order of addition important: preform anisidine/BCl₃ complex, then CH₃CN, then AlCl₃
- Optimum temperature: 40 °C. Optimum pH for work-up: 3.0
- Purified by MTBE slurry at reflux.
- Typical isolated yields: 42-47% on multikilo scale.

Discovery Chemistry, Laval, and Process Chemistry, Ridgefield

Discovery Chemistry, Laval, and Process Chemistry, Ridgefield

Solution to Scale-up Problems

Boehringer Ingelheim

- DME best solvent to minimize formation of **B** (probably minimizes deprotonation of N<u>H</u>-*i*Pr group).
- Dichloromethane "chased" with DME prior to cyclization.
- · Crude product is purified by slurry in DME / water.
- HPLC Assay yield 82%, isolated 77%.
- Reproduced on multikilo scale.

- 1. Assemble quickly.
- 2. Find the assembly that minimizes number of "moves" and total cost.

"Expedient Assembly" of BILN 2061

INRF2

INRF3

• INRF 4 used as crude solid, after HCl and NaHCO₃ washes (EtOAc).

(TBTU)

• Issues to address: high cost and safety problems with TBTU.

Discovery Chemistry, Laval, and Process Chemistry, Ridgefield

"Expedient Assembly" of BILN 2061

Boehringer Ingelheim

Steps 2-3:

A (HOBT-INRF3 adduc

• Problem on scale-up: formation of imp. A if HOBT is not completely removed after TBTU coupling.

• Extra NaHCO₃ washings were added and overall yield of **INRF6** (after EtAOc/MTBE slurry) was >95%.

• Issues: Mitsunobu step has poor Reaction Mass Efficiency (RME = Kg product/ Σ [mass inputs])

Discovery Chemistry, Laval, and Process Chemistry, Ridgefield

"Expedient Assembly" of BILN 2061

Step 4:

Issues: use of TBTU.
HOBT interferes in next step and washes must be extensive [NaHCO₃/ PhMe-MTBE (1:2 v/v)]. INRF8 used as a crude product.

Discovery Chemistry, Laval, and Process Chemistry, Ridgefield

"Expedient Assembly" of BILN 2061: Metathesis Work-up

The effect of concentration after 80% conversion on RCM vield (CH₂Cl₂, reflux, 5% Hoveyda cat) 100 % yield by HPLC 80 60 - no bubbling ▲ bubbling 40 20 0 8 2 4 6 10 0 time (hours)

Metathesis product in some runs decomposes upon concentration! Sweeping off ethene has no effect.

Boehringer Ingelheim

Process Chemistry, Ridgefield

"Expedient Assembly" of BILN 2061: Metathesis Work-up

Boehringer Ingelheim

• Catalyst is still partially active after reaction completion (test with diallyl diethyl malonate).

· Screen set up searching for catalyst inhibitor.

• MNA effective and easily removed into NaHCO₃.

• 5 equiv MNA at 30 °C for 6h destroys catalyst.

• 2-3 Bicarbonate washes and charcoal/celite filtration afford 85% yield (97% purity) INRF9.

"Expedient Assembly" of BILN 2061 Boehringer Ingelheim

"Expedient Assembly" of BILN 2061: Improved Etherification

Discovery Chemistry, Laval, and Process Chemistry, Ridgefield

Boehringer ())) **End-game solution** Ingelheim SO₂CI Br OMe OMe NEt₃, 3:1 PhMe/CH₂Cl₂ Ó rt 93% assay INRF12 INRF14 NHiPr Several sulfonates tested for t_{1/2} in DMF NHiPr 0.4 M at 80 °C (with Cs2CO3). Brosylate t_{1/2}= 21h OMe MeC (longest). ÓН Temperature lowered. OMe Cs2CO3, NMP, 50 °C · Concentration doubled (at 83% 0.2 M, 76% yield). · No chromatography. **BILN2102**

BILN 2061 can be used as such or recrystallized (EtOH/ H_2O) for formation of desired polymorph.

Discovery Chemistry, Laval, and Process Chemistry, Ridgefield

"Expedient Assembly": Summary

Total: 11 Steps (Overall: 26)

Only 4 building steps (affixations): 2 amide couplings 1 ether formation 1 olefin RCM

Extra steps (refunctionalizations): 4 deprotections 2 O-activations 1 amine capping

Boehringer Ingelheim

Costly Process! Synthetic Efficiency needs improvement!

Too many cooks.....

Verderben den Brei...

Guastan la cucina...

Background to Current RCM Conditions

Discovery Chemistry, Laval

Boehringer Ingelheim

You

1st Hoveyda (1H)

2nd Grubbs (2G)

2nd Hoveyda (2H)

Imidazolium-substituted catalysts are much more stable than 1st generation catalysts.

They also react more readily due to more favorable association with olefins.

R.H. Grubbs, "Handbook of Metathesis"; Wiley-VCH, Weinheim, 2003.

RCM of INRF16 With Different Catalysts

Catalyst (mol %)	Solvent	Temp. (ºC)	Reaction Time	Yield INRF11 (assay)	Area % Dimers (LC-MS)
5% 1H	CH ₂ Cl ₂	40	24h	90%	N.D.
3% 1H*	PhMe	60	20h	96%	<0.5%
1% 2H	PhMe	55	1h	85%	9-11%
1% 2G	PhMe	60	1h	87%	8%
	Catalyst (mol %) 5% 1H 3% 1H* 1% 2H 1% 2G	Catalyst (mol %)Solvent5% 1HCH2CI23% 1H*PhMe1% 2HPhMe1% 2GPhMe	Catalyst (mol %) Solvent Temp. (°C) 5% 1H CH ₂ Cl ₂ 40 3% 1H* PhMe 60 1% 2H PhMe 55 1% 2G PhMe 60	Catalyst (mol %)Solvent Solvent (°C)Temp. (°C)Reaction Time $5\% 1H$ CH_2CI_2 40 $24h$ $3\% 1H^*$ PhMe 60 $20h$ $1\% 2H$ PhMe 55 $1h$ $1\% 2G$ PhMe 60 $1h$	Catalyst (mol %)Solvent Solvent (°C)Temp. (°C)Reaction TimeYield INRF11 (assay)5% 1HCH2Cl24024h90%3% 1H*PhMe6020h96%1% 2HPhMe551h85%1% 2GPhMe601h87%

* INRF16 purified by charcoal/silica filtration

Process Chemistry, Ridgefield

Reversibility Test

Reversibility Test: Results

Both reactions converge, from opposite directions, to: 88% prod., 5% S.M., 7% dimer(s).

Boehringer Ingelheim

Tentative Conclusions

Boehringer Ingelheim

• With 1H catalyst, $t_{1/2} = ca$. 720 min. Ethene evaporation is faster than reaction, driving equilibrium to >95% INRF11. Catalyst not active enough to form dimer(s) under the conditions used.

• With 2G catalyst, t_{1/2} = *ca*. 0.5 min. Ethene evaporation slower. Fast equilibrium appears to ensue, accompanied by *ca*. 7% dimers.

• Higher TON and TOF of new-generation catalysts must be balanced against lower yield and purification problems.

Isolation of INRF11 Cyclic Dimers

Boehringer Ingelheim

Unanticipated Problem: Epimerization in a Front Run!

Epimerization Problem: Control Experiments (PhMe at 60 °C)

Catalyst	Promoter	Time (h)	INRF16 Left (*)	INRF11 prod.	Epi- INRF16	Epi- INRF11
4%1H	none	24h	-	100%		
4%1H	5%INRF6	15h	2%	78%	2%	17%
6%1H	12% pyrrolidine	48h	65%	3%	26%	6%
4%1H	12% N-Me pyrrolidine	17h	2%	82%	2%	14%
2%1H	5% PPh ₃	1.5 h	8%	74%	5%	13%
5%1H	5% PCy ₃	2h	5.7%	54%	13.3%	27%
2%2H	5% INRF6	6h	-	100%	-	-

Boehringer Ingelheim

INRF6 (2-4%) found in crude INRF16 used in metathesis.

(*) Quantities are relative amounts by HPLC

Process Chemistry, Ridgefield

Epimerization Problem: Preliminary Conclusions

Boehringer Ingelheim

Possible Mechanism (must be investigated)

- INRF16 must be assayed for INRF6 content (acid wash), and phosphines.
- This may explain why 1G catalyst leads to epimerization (high lability of coordinated phosphine).
- •Ru-H addition/elimination also possible

Discussion of olefin isomerization mechanisms: Schmidt, B. *Eur. J. Org. Chem.* **2004**, 1865-80. Also: S. Nolan *et al. J. Organomet. Chem.* **2002**, *643-4*, 247.

Practical Synthesis: New Assembly

- · More convergent and efficient: 4 steps to metathesis precursor.
- Metathesis, OH activation, etherification, ester hydrolysis remaining (4 steps).
- · No Mitsunobu reactions. Two protecting groups eliminated.
- Caveat: metathesis on INRF 12 is unknown.
- MURPHY'S LAW #5: If nothing can possibly go wrong, something will anyway!

Process Chemistry, BIKG Ingelheim

> Boehringer Ingelheim

RCM of INRF12

RCM of **INRF16OH** produces more dimers compared to **INRF16** (Process Chemistry, Ridgefield).

Starting Material	Catalyst	Solvent	Temp °C	Time (h)	Yield (assay)	Total dimers
INRF16	1H,5%	CH ₂ Cl ₂	40	20	89%	<1%
INRF160H	1H,2-5%	CH ₂ Cl ₂	40	20	75-82%	13%
INRF160H	2G, 2%	CH ₂ Cl ₂	40	20	78%	13%
INRF160H	2G, 2%	PhMe	60	0.1-18	72%	15-20%
INRF160H	2H, 1%	PhMe	55	1	65%	9-11%
INRF160H	2H,1.2%	1:4 PhMe/THF	60	8	88%	6%

RCM of INRF16-OH on 45g Scale

Removal of Dimers by Recrystallization of BILN2102.

	Dimers	Vol EtOAc	EtOAc/ MCH	Cryst. temp	Final temp	ML loss	Dimer remaining
1	6-8%	10	1:1.5	80	rt	14%	0.4%
2	0.4%	7	1:1.5	80	rt	5%	0.09%

Metathesis on INRF16-Bs

0.01M

Ru cat

Boehringer Ingelheim

INRF12-Bs

Catalyst	Solvent	Temperature	RCM Yield	Total Dimers
1H, 4%	CH ₂ Cl ₂	40 °C	83%	4-5%
1H, 4%	PhMe	80°C	85%	4-5%
1H, 2-3.5%	PhMe	60 °C	87%	5-6%
2H, 2%	PhMe	60 °C	72%	14-15%
2G, 2%	PhMe	60 °C	69%	16-17%

Boehringer Ingelheim

 INRF16-Bs was purified by treatment with Charcoal and Silica in toluene then submitted to RCM in toluene with 1H catalyst (60 °C)

Batch	Conditions	Conversion	Assay Yield	Isolated Yield	% Dimers
305g	2 mol%, 14h +1 mol%, +10h	90% >98%	86% 95%	85%	5.1%
361g	3 mol%, 14h +1.2 mol%, +10h	96% >98%	91% 92%	86%	5.9%
445g	2 mol%, 14h +1 mol%, +10h	93% >98%	88% 94%	87%	4.9%

Crystallization leads to satisfactory purity in >90% recovery.

Progress Report

Two scalable routes to BILN 2061 were identified.

Areas for improvements (ongoing):

-More efficient synthesis of building blocks.

-Reduced RCM reaction time and higher TON catalyst.

-More efficient end-game strategy.

-Stay tuned.

Boehringer Ingelheim R&D, Ridgefield, Connecticut

Boehringer Ingelheim

Thank you....

GRAZIE DELL'ATTENZIONE!