Crop Protection Targets

Syngenta Mectins as Insecticides-Acaricides

Insecticide, Acaricide, Nematicide; strength on mites

Produced by fermentation

Mode of action ; Stimulates the release of γ -aminobutyric acid (inhibitory neurotransmitter), activates Cl⁻ channels

syngenta

Application rates: 5-20g/ha UV sensitive

syngenta

syngenta

Discovery of New Mectins as Insecticides-Acaricides

Syngenta Mectins as Insecticides-Acaricides

Produced in 5 chemical steps from Abamectin

Mode of action ; Stimulates the release of γ–aminobutyric acid (inhibitory neurotransmitter), activates CI⁻ channels Application rates: 5-20g/ha UV sensitive

Synthesis of 4"-Epi Amines

i = R₁-COH, THF, ii = NaBH₄, MeOH, pivalic acid cat., iii = MeSO₃H, MeOH, 45-67%

C-C Bond Formation at 4" of α , β - Amino Mectins

 $\alpha\text{-}Amino$ Mectins are biologically even more active than the corresponding β isomers

α,β-Amino Mectins having an additionalC-substituent at 4"are the mostpromising derivatives

C-C Bond Formation at 4"

C-C Bond Formation at 4"

2 diastereomers 1:1

i = NH₂-OH. HCI, pyridine, MeOH, RT, 99% ; ii = n-Bu₃P, PhS-SPh, THF, 0°C, 80% ; iii = m-CPBA, NaHCO₃, CHCI₃, H₂O, RT, 43%

C-C Bond Formation at 4'

C-C Bond Formation at 4" Me Me Me O₂Ni-ii O₂N H_oN Me OR Me O. OR \cap 20% 38%

i = Me-NO₂, piperidine, ii = i-propanol, CH₂Cl₂, CF₃COOH, 0°C

C. Chatgilialoglu, K. U. Ingold, J. C. Scaiano, J. Am. Chem. Soc., 103, 7739, (1981)

Radical Cyclization-Rearrangement

• In the tricyclic derivative stereoelectronic enects are an favouring C-C bond cleavage : p-o overlap in the initial radical and $p-\pi$ overlap in the incipient radical

• In contrast, in the monocyclic radical, only p- σ overlap contributes to the weakening of the C-C bond. However, the incipient radical has its p orbital almost orthogonal to the π orbital of the C=C bond

• Both stereoelectronic effects are required for a fast C-C bond cleavage

1-5 Hydrogen AtomTransfer Reaction

1-5 Hydrogen AtomTransfer Reaction

Origin of the Project

Callistemon Citrinus

Typical Selective Herbicide: Mesotrione

Untreated

Mesotrione 150 g / ha post

syngenta

Inhibitor Binding to the HPPD Enzyme

Herbicidal Activity of Leptospermone

Mesotrione inhibits p-hydroxyphenyl pyruvate dioxigenase in carotenoids biosynthesis

 $\begin{array}{c} & & \\$

SO_Me

Natural substrate binding to HPPD

Cytochrome P450 Mediated Metabolism of Triones

Dione Optimization for Corn Selectivity through Metabolism

OMe

syngenta

Synthesis of Dispirocyclopropyl Dione

 $i=NaH\,,\,DMF,\,RT\,,\,77\%,\ ii=NaI\,,\,DMF,\,micro-wave,\,iii=NaH\,,\,DMF,\,RT\,,\,3\ steps\ one-pot\ 30\%$

syngenta

48

Synthesis of Dispirocyclopropyl Dione

i = NaH , DMF, RT , 77%, ii = NaI , DMF, micro-wave, iii = NaH , DMF, RT , 3 steps one-pot 30%

syngenta

syngenta

Synthesis of Di-Sprirocyclopropyl Trione

i = Br-CH₂-CH₂-Br, K₂CO₃, acetone, reflux, ii = HO-CH₂-CH₂-OH, TsOH.pyridine, toluene, reflux, iii = NaOHaq., EtOH, RT, iv = SOCl₂, MeCO₂Me, LiHMDS, THF, -78°C, v = TsOH.pyridine, acetone:H₂O, reflux, vi = MeONa, toluene:DMF, reflux, vii = NaH, MeI, THF, RT

52

51

Synthesis of Bicyclic Dione

i = H_2SO_4 aq., 80°C, ii = NaOCI, 30°C, 2 steps 95%, iii = $CH_2=O$, H_2O , $HNEt_2$, AcOH, 100°C, iv = Me-CO₃H, Na₂CO₃, RT, 2 steps = 68%, V = NaOMe, toluene: DMF, 110°C, 85%

syngenta

Improved One-Pot Synthesis of Bicyclic Diones

i = KOH, toluene, RT, quantitative, ii = toluene , reflux, 95 % , iii = NaOH, dioxane, reflux, 92 %, iv = Zn , AcOH , 60°C , 85 % , v = H_2 , Pd/C , AcOH, RT, 97% , vi = KOH anhydrous , vi = KOH, toluene, reflux, one-pot 68 %

Synthesis of Novel Bicyclic Dione

X-Ray Structure of Mesotrione in HPPD Binding Site

Optimized Diones and Nicotinic Acids for Selective and Non-Selective Applications

Optimal Activity/Corn Selectivity

Me Me O Me Me CF₃

Optimal Non-Selective Activity

Synthesis of Pyridines as Benzoic Acids Replacement

i = CF_3 -CO-O-CO-CF₃, pyridine, CH_2CI_2 , 97%, ii = CF_3COOH cat., toluene, reflux, 75%, iii = LiOH, H_2O , MeOH, 98%, iv = chlorenamine, CH_2CI_2 , 99%, v = NaOH, Me_2SO_4 , vi = HCl aq., 50% 2 steps, vii = NEt₃, MeCN, RT, viii = acetone cyanohydrine cat., RT, 72% 2 steps

BA -

syngenta

syngenta

Synthesis of Pyridines as Benzoic Acids Replacement

i = $CICF_2$ -CO-O-CO-CF₂CI, pyridine, CH_2CI_2 , 97%, ii = Ph-CHO, DMF, RT, 75%,

iii = n-PropNRuO₄ cat., N-methylmorpholine oxide, CH_2CI_2 , 4Å, RT, 70%, iv = MeSNa, DMF, RT, 82%, v = MeCO₃H, CH_2CI_2 , 86%

Most Active/Corn Selective