


Mechanisms for 2-arylation in Heck reactions of dihydronaphthalene
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Hydroboration / amination : (Mark Hooper; Elena Fernandez)
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(i) catecholborane, 0.2-1% catalyst, 20°C, thf, 1 h.; (ii) 2 MeMgCl (3M in thf), 20°C, 30 min;
(iii) 3 HoNOSOg3H, thf, 10 h; (iv) CODRhacac, Me3SiOSO,CF 3, thf then pentane



Route to secondary amines : Kenji Maeda
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(i) CgH14NHOSO4H, diglyme, 24 h, 20°C;

(ii) PhCH,NHCI (ex. PhCH,NH,, ag. NaOCIH in situ), 0°C, 5 min then 20°C, 1 h;
(iii) Et;NHCI (ex. Eto,NH, aq. NaOCI),*.



Amination of p-methoxystyrene
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82% yield, 92% e.e.

75% yield, 91% e.e.
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76% yield, 91% e.e.




Amination with cyclohexylamine

Reactant Product Yield and E.e.
HNfCGHn
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"expected" "anomalous”
Ar = Ph X=I Condition A 3:2 oy PAT2
Ar=34-CLPh X=1  ConditionA  1:1 AcOl| O
Ar,R”
Ar = 4-FPh X=Br Condition B 1:1
Ar =4FPh X=Br Condition C 1:20
1, Ar = o-tol

Conditons : A, 1 mol% Pd(OAc),, P(o-tol)3, EtsN, CH3CN, refiux; B, 1 mol%
complex 1, NaOAc, DMA, 140°C; C, 5 mol% Pd(OAc),, BusNOAc, DMF, 80°C
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Step 1
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Mismatched catalyst, reactant Cl Cl

trans : cis =68 : 32

[low yielding]

Conditions : (i) Catecholborane (0.6 eq.), S-QuinapRh catalyst, C;Hg, 2 h., (ii) HoO,, NaOH, Hx0; (iii)
Catecholborane (1.2 eq.), S-QuinapRh catalyst, C;Hg, 48 h.; (iv) EtaZn, C;Hg, then MeNHCI (in situ), EO.



Ligands preparedby resolution procedures

SOV ¢S

- Ligand needs to be

OH HO resolved; racemisation very
OO OO ~ slowat>100"C
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[Lipshutz, TL. 1998]
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Successful cyclisation method

Ni(OAc)2, 2,2'-bipyridyl
O Q NaH , KI

THF / 60°C

Br Br
ex R,R-tartrate

P. Caubere, 1989

60%, 1 mmolar scale



Two independent conformations;
small twist angles







Threitol cycldphane
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Biphenol Synthesis in the Mannitol Series

i) NaH
——————
+ Br ii) Ni(PPhg),
l
: 42% overall
OO~ NsiMe, °

Likewise Threitol, Iditol series

61%

Biphenols show sharp CH, NMR
at ambient temperature and below
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in NMR probe, —-15°C

HoO CHj3
1
\F\lh/ Ar \H 7 PHIP detects transients where
/| \\ 1 there is H----H coupling

[Bargon, Giernoth U. Bonn]



PHIP Experiment
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Transfer of para-hydrogen to new environment :
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Up to 10° signal enhancement HeM
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Only aff and Bo spin states are populated
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Summary of observations on the PHIP transient

The new species is associated with 1-H chemical shifts of ca. -2 and -19 ppm [-2 ppm is unusual - agostic?]

Formation is observed in the temperature range of -10°C to -25°C - occurs only when substrate remains

Concurrent with the observation of transient, polarised hydfogenation product is also seen.

Both rhodium norbornadiene and cyclooctadiene complexes can be employed.

The transient is associated with bound substrate, since different substrates give distinct spectra

Any exchange of substrate with unbound species is slow (half-life >300 ms) on the NMR time-scale



Conclusions on the PHIP-observed species

The complex is a rhodium enamide dihydride with one agostic hydrogen in flight to the beta-carbon;
the second is trans- to a coordinated (enamide) oxygen

For dehydroalanine, the hydride exchanges rapidly with the beta-methylene group

The transient behaves as an intermediate in hydrogenation,
being closely associated with the observation of spin-polarised product (INEPT)

Polarisation transfer to the reactant observed by INEPT requires some substrate dissociation
from the transient - but does not reveal the mechanism by which this occurs.



Dynamic agostic methyl group for the dehydroalanine case
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Rotation about the Ca - CB bond is rapid on the NMR timescale





