Supramolecular Concepts in Homogeneous Catalysis

Bernhard Breit

Institut für Organische Chemie & Biochemie and Freiburg Institute for Advanced Studies (FRIAS) Albert-Ludwigs-Universität Freiburg, Germany

> IASOC 2008 Ischia, Italy September 29, 2008

Research Topics in the Breit Group: Synthesis & Catalysis

Angew. Chem. 2007, 119, 8824, (selected as "Hot Paper")

First Regioselective Room Temperature/Ambient Pressure Hydroformylation [Rh(CO)2acac] (0.67mol%) 6-DPPon (3.33 mol%) Me CO/H₂ (1:1, 1 atm) THF, 22 °C, 20 h FGR FGR FGR' quant. C branched linear Selection from 31 examples TBSO 99:1 98:2 **PMBO** 95:5 онон 99:1 99:1 99:1 Et₂I TrtO 99:1 99:1 99:1 PhHN EtO₂C 97:3 98:2 BnO EtO₂C 91:9 99:1 99:1 8 H₂

W. Seiche, A. Schuschkowski, B. Breit, Adv. Synth. Cat. 2005, 347, 1488.

Hydroformylation of Terminal Alkenes

4 x 4 "Self-Assembled" Ligand Library - Hydroformylation

Extension of the Concept: New Heterocyclic A-T Emulating Templates

C. Waloch, J. Wieland, M. Keller, B. Breit, Angew. Chem. Int. Ed. 2007, 46, 3037.

C. Waloch, J. Wieland, M. Keller, B. Breit, Angew. Chem. Int. Ed. 2007, 46, 3037.

Parallel-Screening of a 8x10 Catalyst Matrix for Asymmetric Hydrogenation

MeC

- Parallel reactor: 6 blocks à 16 reactors
- · Adjustment of individual rxn. conditions
- Automated 4 needle dossage system
- Automated sample collection & analysis

L^a/L^b (1.1-1.25 mol% each) H₂

MeC

with C. Waloch, M. Weis & C. Jäkel (BASF AG) unpublished results

Hydrogenation of Acetamidoacrylate

	(S)-6- BIPAP	(S)-6- MBIPAP	(S)-6- TBIPAP	(S,S)-6- DMPAP	(+)-6- APPAP	(–)-6- APPAP	(+)-6- NPPAP	(–)-6- NPPAP	(+)-2- APPAT	(–)-2- APPAT	+ (S) - (R)
(S)-3- BIPICon	95	94	20	33	49	48	28	45	75	52	>90%
(<i>R</i>)-3- BIPICon	91	18	73	17	-54	-50	-58	-52	-55	-80	>80%
(S)-3- MBIPICon	94	57	49	-13	-1	4	7	8	-19	25	>70%
(S,S)-6- DMPICon	80	57	31	44	42	37	61	62	40	41	>50%
2-PAIND	85	42	-79	41	7	-10	4	-3	-6	5	>30%
3-DPICon	77	45	-70	-39	-6	1	-1	0	-19	31	0-29%
(+)-3- APICon	72	23	-66	-15	0	-15	-4	5	-7	17	
(–)-3- APICon	73	45	-31	-3	-2	6	-2	3	-11	7	

Asymmetric Hydrogenation of Acetamidoacrylate - The Winners

M. Weis, C. Waloch, W. Seiche, B. Breit, *JACS* 2006, *128*, 4188.

T. Smejkal, B. Breit, Angew. Chem. 2008, 120, 317.

Conditions: $[Rh(CO)_2acac]/ligand/substrate = 1:10:200, c_0(substrate) = 0.2 M, THF(2 ml), 10 bar CO/H₂ (1:1), 40°C, 4 h. T. Smejkal, B. Breit,$ *Angew. Chem.***2008**,*120*, 317.

	Entry	Ligand	Substrate	TOF (h ⁻¹)	Regioselectivity (I/b ratio)
	1	Ph ₂ P N O 1 N NH ₂ NH ₂	ОН	250	23
Ligand Modification	2	PPh ₃ / N 0 N NH ₂ NH ₂	ОН	12	1.5
Substrate Modification	3	Ph ₂ P N O 1 N NH ₂ NH ₂		49	3.6
	4			29 (34)	1.1 (1.4)

Conditions: $[Rh(CO)_2acac]/ligand/substrate = 1:10:200, c_0(substrate) = 0.2 M, THF(2 ml), 10 bar CO/H_2 (1:1), 40°C, 4 h.$

Conditions: $[Rh(CO)_2acac]/ligand/substrate = 1:10:50, c_0(substrate) = 0.2 M, THF(4 ml), 6 bar CO/H_2 (1:1), RT, 68 h.$

Conditions: $[Rh(CO)_2acac]/ligand/substrate = 1:10:150, c_0(substrate) = 0.2 M, THF(8 ml), 4 bar CO/H₂ (1:1), 25° C.$ T. Smejkal, B. Breit,*Angew. Chem.***2008**,*120*, 317.

Supramolecular Catalyst - Hydroformylation of α , β -Unsaturated Carboxylic Acids

Conditions: $[Rh(CO)_2acac]/ligand/substrate = 1:10:200, c_0(substrate) = 0.2 M, CH_2Cl_2 (4 ml), 10 bar CO/H_2 (1:1), 25°C, 24 h.$

T. Smejkal, B. Breit, Angew. Chem. 2008, 120, 4010 (selected as "Hot Paper")

	(Catalyst Control E	xperiments		
H ₁₁	[Rh(CO) ₂ acac] 1 (5 mol%) COOH CO/H ₂ (1:1, 10 DCM, 25 °C, 24	(0.5mol%) bar) ↓ h C ₅ H ₁₁	2 ^{CO₂H} C ₅ H ₁₁ 3	СНО _{С5} H ₁₁ СО ₂ 4 СНО	
Entry	Ligand	Conversion [%]	Yield [%]		
1	1	100	2 (<1), 3 (94)		
2	No ligand	<1	2 (<1)		
3	PPh ₃	32	2 (32)		
4 ^[b]	PPh ₃	33 68	2 (26), 3 (3), 4 (4)		
5	P[O(<i>o,p-t</i> Bu ₂ C ₆ H ₃)] ₃		2 (33), 3 (23), 4 (12)	5 ^{NH} 2	
6 ^[c]	PPh₃/ 5 (1:1)	8	2 (8)		
7	PPh₃/Et₃N (1:1)	42	2 (42)		
8	PPh₃/ 6 (1:1)	<1	2 (<1)	N N H	
g	PPh₂/Et₂N (1:20)	25	2 (8), 3 (17)	6	

T. Smejkal, B. Breit, Angew. Chem. 2008, 120, 4010.

