DIVERSITY ORIENTED SYNTHESIS

Scope: To develop synthetic protocols able to generate efficiently relatively complex molecules in few steps introducing at the same time various "diversity inputs"

Main features:

- 1) High rate of complexity increase *per* synthetic step (minimize the use of protecting groups)
- 2) Possibility of introducing diversity inputs (decoration diversity or scaffold diversity) without changing the general protocol
- Branched synthetic pathways
 Forward synthetic analysis
 Image: Scaffold of the synt

MULTI DIVERSITY GENERATION REACTIONS (MDGR)

In a traditional combinatorial synthesis the various diversity inputs are added in a sequential way to build up a scaffold sorrounded by diverse "decorations"

A multi diversity generation is a reaction that allows the simultaneous joining, in one synthetic step, of more than 2 diversity inputs

MULTICOMPONENT REACTIONS

Reactions are defined as multicomponent when three or more substrates combine in just one step to give a product that contains essential parts of all components.

Multicomponent reactions are often, but not always, also multi diversity generation reactions (MDGRs).

The Strecker reaction is the oldest multicomponent reaction, but it is not a multi diversity generation reaction. Two components are "fixed".

On the contrary, the Ugi reaction is a true MDGR, since it involves the introduction of 4 diversity inputs

MAIN ISOCYANIDE BASED MULTI COMPONENT REACTIONS

Isocyanides are simple bifunctional synthons, well suited for type 2 MCRs empty orbital

MAIN ISOCYANIDE BASED MULTI COMPONENT REACTIONS

How to modify Passerini and Ugi reactions in order to obtain diverse scaffolds?

 Intramolecular variants
 Substitution of one component with different reagents
 Post-condensation transformations

Through these modifications, a lot of new scaffolds, especially drug-like nitrogen heterocycles, have been obtained, most of them during the last 7-8 years

Strategy # 2: Substitution of a component

Basso, A.; Banfi, L.; Guanti, G.; Riva, R., Tetrahedron Lett., 2005, 46, 8003

Strategy # 3: Post-condensation transformations

These structures are very important as protease inhibitors. Their previous syntheses required at least 7-8 steps!

Banfi, L.; Guanti, G.; Riva, R., *Chem. Commun.*, **2000**, 985-986. Banfi, L.; Guanti, G.; Riva, R.;
Basso, A.; Calcagno, E., *Tetrahedron Lett.*, **2002**, 4067-4069 *Solid phase synthesis*: Banfi, L.; Basso, A.; Guanti, G.; Riva, R., *Molecular Diversity*, **2003**, 227-235. Basso, A., Banfi, L.; Riva, R.; Piaggio, P.; Guanti, G., *Tetrahedron Lett.*, **2003**, 2367-2370.

Post-condensation transformations: acyl transfer

New synthesis of densely substituted aziridines

Post-condensation transformations: S_N2'

Use of the isocyanide-derived secondary amide for cyclization through nucleophilic substitution

Banfi, L.; Basso, A.; Guanti, G.; Riva, R., preliminary results. See Hirai, Y. et al., *Org. Lett.*, **2000**, 2427

Post-condensation transformations: acylation

The post-condensation transformation may be a simple intramolecular acylation

Synthesis of functionalised pyrrolidines through an intramolecular Ugi reaction

Use of Aminoaldehydes (cyclic imines) as components

Entry ^a	R ¹	R ²	R ³	Yield	D. r.
1	SiMe ₂ <i>t</i> Bu	<i>n</i> C ₃ H ₇	Bn	45%	68:32 ^b
2	Tr	<i>n</i> C ₃ H ₇	Bn	70%	53:47 ^c
3	SiMe₂ <i>t</i> Bu	Ph	CH ₂ CO ₂ <i>t</i> Bu	62% ^d	53:47 ^{e,f}
4	SiMe₂ <i>t</i> Bu	Ph	nC₄H ₉	44% ^d	64:36 ^b
5	SiMe₂ <i>t</i> Bu	Ph	<i>t</i> Bu	46% ^d	63:37 ^b
6	SiMe₂ <i>t</i> Bu	CH ₂ =CH(CH ₂) ₂	Bn	60%	68:32 ^e
7	SiMe₂ <i>t</i> Bu	Fmoc-L-Ala	Bn	80%	64:36 ^e
8	SiMe₂ <i>t</i> Bu	Fmoc-D-Ala	Bn	69%	65:35 ^e
9	SiMe ₂ <i>t</i> Bu	Boc-L-Asp(OBn)	Bn	85%	64:36 ^e

Note: ^a all the reactions were carried out in MeOH (0.30 M) at r.t. for 1-2 h; ^b by GC-MS; ^c by weight; ^d yield from azidoaldehyde; ^e by HPLC; ^f Determined after SiMe₂*t*Bu removal (HF/CH₃CN or *n*Bu₄NF).

Banfi, L.; Basso, A.; Riva, R.; Guanti, G., Tetrahedron Lett., 2004, 45, 6637-6640.

Post-condensation transformations: acylation

Banfi, L.; Basso, A.; Lecinska, P.; Guanti, G.; Riva, R., Org. Biomol. Chem., in press

Banfi, L.; Basso, A.; Guanti, G.; Riva, R., Tetrahedron Lett., submitted

Banfi, L.; Basso, A.; Guanti, G.; Riva, R., Tetrahedron Lett., submitted

Synthesis of cyclopeptides grafted onto tetrahydroazoninones

RGD cyclic peptide based on tetrahydroazoninones proved to be selective ligands for Integrin $\alpha_{v}\beta_{3}$

Anthoine-Dietrich, S.; Banfi, L.; Basso, A.; Damonte, G.; Guanti, G., Riva, R., *Org. Biomol. Chem.*, **2005**, *3*, 97-106. Banfi, L.; Basso, A.; Damonte, G.; De Pellegrini, F.; Guanti, G.; Monfardini, I.; Riva, R.; Scapolla, C., *submitted* Banfi, L.; Basso, A.; Damonte, G.; Guanti, G.; Monfardini, I.; Riva, R.; Scapolla, C., *to be published*

Enantioselective synthesis of tetrahydroazoninones

Development of a new chiral auxiliary for the Ugi reaction

Development of a new chiral auxiliary for the Ugi reaction

