The Chemistry and Biology of Epothilones

Karl-Heinz Altmann Institute of Pharmaceutical Sciences, ETH Zürich

ISCHIA SCHOOL OF ADVANCED ORGANIC CHEMISTRY (IASOC)

Ischia, Sept. 16 - 21

Epothilones - 16-Membered Macrolides from Gliding Bacteria

ETH

- **R** = **H**: Epothilone A
- **R** = CH₃: Epothilone B

From myxobacterium *Sorangium* cellulosum Soce90:

- Reichenbach et *al.*, 1993, 1996
- Bollag et *al.*, 1995

Cytoskeleton and Microtubule Structure

Taxol and Epothilones - G2/M Arrest and Induction of Apoptosis

Epothilones - Growth Inhibition of Human Cancer Cell Lines

ETH

		IC ₅₀ [nM]		
Cell Line		Epothilone B	Epothilone A	Taxol
A-549	(Lung)	0.23	2.67	3.19
Du145	(Prostate)	0.31	4.86	2.79
HCT-116	(Colon)	0.32	2.51	1.66
MCF-7	(Breast)	0.18	1.49	1.80
MCF-7/ADR	(Breast, MDR)	2.92	27.5	9105
KB-31	(Epidermoid)	0.19	2.10	2.31
KB-8511	(Epidermoid, MDR)	0.19	1.90	533

Epothilone-Derived Agents – Compounds in Clinical Development

Roche/Kosan, Phase II

Evolving New Scaffolds for Microtubule Stabilization -Structural Entry Points

Deoxyepothilone SAR - Cis vs Trans Olefins

	R	%Tubulin Polymerization	IC ₅₀ KB-31 [nM]	IC ₅₀ KB-8511 [nM]
$HO \underbrace{f_{i}}_{i} $	/=\	50	25	9.9
	\searrow	48	52	23
	H ₃ C	93	2.70	1.44
	H ₃ C	38	44	34

For first studies on *trans*-deoxyepothilones *cf.*: S. J. Danishefsky *et al.*, *Angew. Chem. Int. Ed.* **1997**, *36*, 757.

Total Synthesis of trans-*Epothilone* A – *trans-Deoxy-Epothilone* A

K.-H. Altmann, G. Bold, G. Caravatti, D. Denni, A. Flörsheimer, A. Schmidt, G. Rihs, M. Wartmann, Helv. Chim. Acta 2002, 85, 4086-4110.

trans-Epothilone A - Epoxidation Selectivity

*Based on recovered starting material

K.-H. Altmann, G. Bold, G. Caravatti, D. Denni, A. Flörsheimer, A. Schmidt, G. Rihs, M. Wartmann Helv. Chim. Acta 2002, 85, 4086-4110.

Epothilone SAR - Assessment of Biological Activity

ETH

Induction of tubulin polymerization

- \bullet Polymerization of MAP-rich porcine tubulin at pH 6.8 and 2 μM compound concentration.
- Percent polymerization relative to the effect of 25 μ M Epothilone B.

Cytotoxicity against KB-31 and KB-8511 (P-gp-overexpressing) cells

• Growth inhibition after 72h continuous exposure.

Trans-*Epothilones A -* **In vitro***Profile*

*Concentration required to induce 50% tubulin polymerization

Epothilone A - Bioactive Conformation

T. Carlomagno, M. J. J. Blommers, J. Meiler, W. Jahnke, T. Schupp, F. Petersen, D. Schinzer, K.-H. Altmann, C. Griesinger *Angew. Chem.* **2003**, *115*, 2615 - 2619.

Epothilone A – **Putative** Bioactive Conformations

ETH

Electron crystallography & NMR analysis

Nettles *et al.*, *Science* **2004**, *305*, 866-869.

IC₅₀ (KB-31): 1.81 nM

A. Flörsheimer, M. Wartmann, K.-H. Altmann, unpublished. *Cf.* also: A. Regueiro-Ren et *al.*, *Org. Lett.* **2002**, *4*, 3815-3818.

Liquid state NMR

Carlomagno *et al.*, *Angew. Chem.* **2003**, *115*, 2615-2619.

Epothilone D Analogs with Constrained Side Chains

Growth inhibition (IC₅₀ [nM])

K.-H. Altmann, G. Bold, G. Caravatti, A. Flörsheimer, V. Guagnano, M. Wartmann, Bioorg. Med. Chem. Lett. 2000, 10, 2765-2768.

Epothilone Analogs with Constrained Side Chains – How important is the Position of the Nitrogen ?

		EC ₅₀ Tubulinpol.	IC ₅₀ [nM]		
I		[µM]	HCT-116	A549	_
HO	X = S, Y = N	1.02	1.22	1.00	-
	X = N, Y = S	1.17	63.3	68.7	
HO	X= CH, Y = N	3.9	0.82	1.21	
	$\mathbf{X} = \mathbf{N}, \mathbf{Y} = \mathbf{C}\mathbf{H}$	4.9	112	134	
HO	X= CH, Y = N	4.3	0.46	0.59	
	$\mathbf{X} = \mathbf{N}, \mathbf{Y} = \mathbf{C}\mathbf{H}$	3.2	0.49	0.74	

G. Bold, S. Wojeik, G. Caravatti, R. Lindauer, C. Stierlin, J. Gertsch, M. Wartmann, K.-H. Altmann, ChemMedChem 2006, 1, 37-40.

Combining Backbone and Side Chain Modifications - Chemistry

F. Cachoux, T. Isarno, M. Wartmann, K.-H. Altmann, ChemBioChem 2006, 7, 54-57.

Total Synthesis of Side-chain-modified trans-Epothilone A

Oxidant	Conversion (HPLC %)	Ratio I/II	Yield (I+II; %)
MeReO ₃ , no catalyst	100	1/1	68
<i>m</i> -CPBA, no catalyst	50	1/1	30
<i>Oxone</i> [®] , 0.3 eq catalyst	50	8/1	25
<i>Oxone</i> [®] , 0.6 eq catalyst	90	8/1	68
<i>Oxone</i> ®, 0.8 eq catalyst	100	8/1	70

F. Cachoux, T. Isarno, M. Wartmann, K.-H. Altmann, ChemBioChem 2006, 7, 54-57.

Benzimidazole-based Analogs of Epothilone A – Antiproliferative Activity

F. Cachoux, T. Isarno, M. Wartmann, K.-H. Altmann, ChemBioChem 2006, 7, 54-57.

Epoxide Replacement - Cyclopropane-based Analogs

F. Cachoux, T. Isarno, M. Wartmann, K.-H. Altmann, Synlett 2006, 1384-1388.

3-Deoxyepothilone B – Synthesis and Antiproliferative Activity

Combining Macrocycle and Side Chain Modifications – Towards new Scaffolds for Microtubule Inhibition

F. Cachoux, T. Isarno, M. Wartmann, K.-H. Altmann Angew. Chem. Int. Ed. 2005, 44, 7469-7473.

N-Alkyl Amides and Imidazoles as Deoxyepothilone Mimetics

For early work on deoxyepothilones cf.: K. C. Nicolaou et al., Nature 1997, 387, 268; S. J. Danishefsky et al., Angew. Chem. Int. Ed. 1997, 36, 757.

C12/C13-Amides and Other 12-Aza-Epothilones

Carbon Replacement in the Macrocycle - 12-Aza-Epothilones

ETH

12-Aza-Epothilones – A New Class of Potent Microtubule-Stabilizers

