

Solid-Phase a Useful Tool for Organic Synthesis of both Small Molecules and Biomolecules

Fernando Albericio

ISCHIA ADVANCED SCHOOL OF ORGANIC CHEMISTRY Ischia Porto September 16-21, 2006

Bruce Merrifield

The Nobel Prize in Chemistry 1984

Peptide pharmaceuticals: the market

Total drug sales (world): $\sim 280 \times 10^9 \text{ }$

 14
 10

 recombinant
 synthetic
 ■ mAbs

Therapeutic areas

Allergy, asthma
Analgesia
Antimicrobials
Antivirals
Baldness
Cancer
CNS
Diagnostics

DEVELOPMENT No lack of hopefuls in the global

Production Peptide Drugs Today

PEPTIDES	Length	Quantites	Status	Strategy
ACTH (1-24)	24	50-100Kg	Market	Solution Phase
Autosiban	9	50-100Kg	Market	Solution Phase
Zinconotide	25	1-5Kg	Market	Solid Phase
Lanreotide	8	100-200Kg	Market	Solid Phase
Cyclosporin	11	100 Tons	Market	Biotechnology
Fuzeon T-20	36	3-5 tons	Market	Hybrid Method
Insulin	51	Multi tone	Market	Biotechnology
LH-RH analogues	10	150-200 Kg	Market	Solution or Solid Phase
Oxytocin	9	50-100Kg	Market	Solution Phase

Example of the Hybrid Approach: Fuzeon T20

Ac-Tyr-Thr-Ser-Leu-His-Ser-Leu-He-Glu-Glu-Ser-Gln-Asn-Gln-Gln-Glu-Lys-Asn-Glu-Glu-Glu-Leu-Glu-Leu-Asp-Lys-Trp-Ala-Ser-Leu-Trp-Asn-Trp-Phe-NH₂

Reviewing the History of Lamellarins

ΑCTIVITY

- Inhibition of cell division
- Inhibition of HIV-1 integrasa
- Cytotoxic against P388 and A549
- Immunomodulatory activity
- Selectivity toward melanoma cell lines
- Effective in the treatment of
 multidrugs resistant tumors

The Bead, a Black Box?

Lamellarins Solid-Phase Synthesis: Retrosynthetic Analysis

Lamellarins Solid-Phase Synthesis

Anchorage into the resin: IR

Anchorage into the resin: Gel-phase ¹³C NMR

10 mg of resin

Lamellarins SPS: Sonogashira Reaction

Sonogashira Cross-Coupling Reaction

P. Cironi, M. Álvarez, F. Albericio, OSAR & Combinatorial Science 2004, 23, 61-68.

Sonogashira Cross-Coupling Reaction

Lamellarins SPS: Baeyer-Villiger Reaction

Lamellarins SPS: Hydrolysis and Acylation

Control of Solid-Phase Reactions: ¹³C MAS-NMR

C13-HRMAS/ Bruker DMX500 CDCl3/ 25C PCironiData: 11/07/02 /50 uL amb espaiadorgir 5000 Hz

P. Cironi, M. Álvarez, F. Albericio, OSAR & Combinatorial Science 2004, 23, 61-68.

"Aging" of the Resin: Gel-phase ¹³C NMR

Resin more rigid and less amenable to swelling

Lamellarins SPS: [3+2] Cycloadditon

P. Cironi, I. Manzanares, F. Albericio, M. Álvarez, Org. Lett. 2003, 5, 2959-2962

Oxidation and Cleavage: Cleavage Conditions Gives Diversity

P. Cironi, C. Cuevas, F. Albericio, M. Álvarez, Tetrahedron, 60, 8669-8675 (2004)

Lamellarins SPS: HPLC

Solid-Phase Peptide Synthesis is a proper combination of solid supports protecting groups (handles/linkers) and coupling reagents

Solid Supports

ChemMatrix®

NH₂

NH₂

NH₂

CLEAR

ChemMatrix

Library of Mixtures: Simultaneous Synthesis

Mix and Split (One bead, one compound)

Affinity Chromatography for Monoclonal Antibodies Against Granuclocyte Macrophage-Colony Stimulating Factor (GM-CSF)

Library of 130.321 (19⁴) tetrapeptides

Solid-phase Screening (Immunoaffinity)

Affinity Chromatography for Monoclonal Antibodies Against Granuclocyte Macrophage-Colony Stimulating Factor (GM-CSF)

Library of 130.321 (19⁴) tetrapeptides

Staged Released

1 % TFA

ChemMatrix Bead Portion Released

B-Amyloid 1-42

Formation of amyloid plaques is thought to contribute to the degradation of the neurons in the brain and the subsequent symptoms of **Alzheimer**'s disease.

Synthesis attempts:

Synthesis in solution

Solid-Phase using differents resins: polystyrene, Tentagel, PEG-PS and Pepsyn K

Several strategies have been studied to overcome the difficulties of this synthesis: introduction of an oxidized Met-35, the use of DMSO as a coupling co-solvent, the use of DBU, the introduction of Hmb backbone amide protection.

Recently, the use of an O–N intramolecular acyl migration reaction of the corresponding O-acyl isopeptide^{*}.

*Y. Sohma, Y. Kiso. et al. J. Peptide Sci. 2005 vol 11 441–451

Synthesis of β-Amyloid 1-42

F. García-Martín et al J. Comb. Chem., 8, 213 (2006)

Couplin Methods: Solid-Phase Synthesis of Depsipeptides

HFA-Hydroxyacids

- Activation of carboxyl group
- Protection of hydroxyl group

SPS of Depsipeptides with HFA

Peptide Synthesis: Chossing the Solvent

Solvent	V _{reaction} (h)	Racemization
DMSO	4 ^{1/2}	<18%
DMF	24	<11%
THF	5	<1%
CHCl ₃	50	<1%
DCM	28	<1%
Toluene	48	<1%
Hexane	No reaction	

Depsipeptide Synthesis

Depsipeptide Synthesis

 $\&\beta$ -L-Ala-L-Lac-L-Val-L-Phlac-L-Ile&

For Nomenclature: Spengler, Jiménez, Burger, Giralt, Albericio. J. Peptide Res., 65, 550 (2005)

SPPS

4º Acoplamiento

4º Acoplamiento

After 5 couplings

Synthesis of Non-natural HAs

Coupling Chemistries: Carbodiimide Coupling and Aminium Salts

Coupling Chemistries: HOBt vs HOAt

Mechanism

Thiocoraline Family

Azathiocoraline

Azathiocoraline Solid-Phase Synthetic Strategy

- Solid-Phase Peptide Chain Elongation
- Disulfide Bridge (S-Acm)Formation on Solid-Phase
 - If possible, Macrolactamization on Solid-Phase
 - Incorporation of the Heterocycle in the last step

Azathiocoraline: Two Synthetic Strategies

Macrolactamization on Solution: Convergent Synthesis

Macrolactamization on Solid-Phase: Stepwise Synthesis

(1997),and 120, 2690 (1998)

Choose of the Cyclization Point

N-Methyl Amino Acid as Amino Component → Hindered MeCys as Acid Component → Racemization

Scheme 1. a) Boc-D-Dap(Fmoc)-OH, DIEA, CH_2CI_2 ; b) MeOH; c) piperidine-DMF (1:4), piperidine-DBU-toluene-DMF (1:1:4:14); d) Fmoc-AA-OH/HATU/DIEA, DMF; e) piperidine -DMF (1:4); f) TFA/CH₂CI₂ (1:99); g) PyAOP/DIEA, CH_2CI_2 ; h) I_2 , DMF; i) EDC·HCI/HOAt/DIEA, CH_2CI_2 (1mM); j) TFA-H₂O (19:1); k) 3-hydroxyquinaldic acid/EDC·HCI/HOSu/DIEA, CH_2CI_2 .

Azathiocoraline: Peptide Elongation

Azathiocoraline: Cleavage, Convergent Approach

Azathiocoraline: Coupling, Convergent Approach

Azathiocoraline: On resin disulfide formation

Solution Disulfide Formation gave clearly worse results

Azathiocoraline: Macrolactamization

Azathiocoraline: Incorporation of 3-Hydroxyquinaldic Acid

Azathiocoraline: Final Product

EDC·HCI / HOSu

- Azathiocoraline
- Azathiocoraline + 3HQA

Scheme 1. a) Boc-D-Dap(Fmoc)-OH, DIEA, CH_2CI_2 ; b) MeOH; c) piperidine-DMF (1:4), piperidine-DBU-toluene-DMF (1:1:4:14); d) Fmoc-AA-OH/<u>HATU</u>/DIEA, DMF; e) piperidine -DMF (1:4); f) TFA/CH₂CI₂ (1:99); g) <u>PyAOP</u>/DIEA, CH_2CI_2 ; h) I₂, DMF; i) <u>EDC·HCI/HOAt</u>/DIEA, CH_2CI_2 (1mM); j) TFA-H₂O (19:1); k) 3-hydroxyquinaldic acid/<u>EDC·HCI/HOSu</u>/DIEA, CH_2CI_2 .

Scheme 2. a) H-D-Dap(Fmoc)-OAIIyI, DIEA, CH_2CI_2 ; b) MeOH; c) piperidine-DMF (1:4), piperidine-DBU/toluene/DMF (1:1:4:14); d) Fmoc-AA-OH/HATU/DIEA, DMF; e) piperidine-DMF (1:4); f) Boc-D-Dap(Fmoc)-OH/HATU/DIEA, DMF; g) [Pd(PPh_3)_4], PhSiH_3, CH_2CI_2 ; h) I_2 , DMF; i) DIPCDI/HOAt, DMF; j) TFA-CH_2CI_2 (1:99); k) TFA-H_2O (19:1); l) 2-hidroxyquinaldic acid/EDC·HCI/HOSu/DIEA, CH_2CI_2

Figure 2. HPLC cromatograms of purified Azathiocoraline. Reverse-phase C18 columns was used for the analysis with elution by linear gradient over 15 min of 0.036% TFA in CH3CN and 0.045% TFA in H2O from 5:5 to 9:1.

Life doesn't exist without barriers ...

But therapy requires that we able to breach those barriers

Paul Wenders, Stanford University

 γ -Peptides as Foldamers

New Oligomers (y-Peptides) Based in Amp with Well Defined Secondary Structure

Foldamers Based in Amp

Synthesis of Side-Chain Amide γ -Peptides

Synthesis of Side-Chain Amine γ -Peptides I

Synthesis of Side-Chain Amine γ -Peptides II

Synthesis of Side-Chain Guanilidated y-Peptides

Amine and Amide γ -Peptides

(b)

 $\begin{array}{c} \mathsf{CH}_{3}\\ \mathsf{R}_{1}=-\mathsf{CH}_{2} & \end{array} \\ R_{2}=-\mathsf{CH}_{2} & \mathsf{CH}_{3}; \\ \mathsf{R}_{1}=\mathsf{R}_{2}=-\mathsf{CH}_{2} & \end{array} \\ ; \\ \mathsf{R}_{1}=\mathsf{R}_{2}=-\mathsf{CH}_{3} & \end{array}$

DC of Ac-[γ -Amp(N $^{\alpha}$ -Ac)]₆-NH₂

DC of Ac-[γ -Amp(N^{α}-N)- γ -Amp(N^{α}-PhAc)]₃-NH₂

Solid-Phase Synthesis of *γ*–Peptids Labeled with CF

TAT [49-57] peptide

Labelling with CF: CF/DIPCDI/HOBt (5eq:5eq:5eq)

Cell Uptake by Fluorimetry

Confocal Microscopy of γ-**Peptides at 37°C in Fixed COS-1 Cells**

Conditions:

10 μM at 37°C, 2h Fijación: 3% p-formadehído Marcaje del núcleo: IP Scale bars 10 μm

> All Peptides show Cell Penetrating Capacity, specially 4a!!!

Enzymatic Stability of γ **-Peptids**

Leishmanicide Activity

Acknowledgements

 Núria Bayó-Puxan Dr. Josep Farrera Fayna García-Martín • Dr. Judit Tulla-Puche Ariadna Fernández Marc Vendrell Dr. Ruben Ventura Dr. Estela Riego · Albert Isidro · Pilar E. López Dr. Silvia Camperi · Javier Ruiz Tommaso Cupido • Dr. Jan Spengler

Prof. Mercedes Alvarez

- Prof. Klaus Burger
- · Prof. Osvaldo Cascone
- Prof. Ernest Giralt
- Dr. Miriam Royo

Co-localización con DX-TR en células vivas

Condiciones

- CF-péptido 10 $\mu\text{M},$ 37°C en células HeLa

- Marcador de fase fluida: Texas Red-Dextran (TR-DX)