Beyond the Genomes: Small Molecules for Biology

The "Space" problem:

Chemical space occupied by small bioactive molecules? ⇒Cannot be covered by synthesis: Not enough matter/time! ⇒Does not have to be covered: Nature did not explore it!

The Decisive Question

How to identify biologically relevant and pre-validated starting points in chemical structure space for compound development?

3

Natural Product Chemical Space

Analyze the structures of the small molecules created by nature in evolution!

- ⇒ Map natural product chemical space!
- ⇒ Intuitively accessible classification/logic?
- ➡ Reduction of structural complexity retaining kind of bioactivity?
- ⇒ Synthesis and supply problem?

Research Strategy

Structural Classification of Natural Products (SCONP) (Collaboration with P. Ertl, A. Schuffenhauer, Novartis)

Data: CRC Dictionary of Natural Products $(02/05) \rightarrow ca. 190\ 000$ entries.

⇒Biology Oriented Synthesis(BIOS)

Biologically validated/evolutionary selected scaffolds.

Synthesis and biological evaluation of NP-inspired compound collections! Non-NP biologically relevant classes!

> Reviews: Angew. Chem. Int. Ed. 2011, 50, 10800 J. Am. Chem. Soc. 2014, 136, 11853

Proc. Natl. Acad. Sci.

2005, 102, 17272

no

 $[\]Rightarrow$ Selective formation of 1 stereoisomer out of 512 possible isomers

⇒ Programmable ⇒ enantiomers : change order of addition!

Antonchick, Waldmann et al., Angew. Chem. Int. Ed., 2013, 52, 12892

Enantioselective Catalytic [6+3] Cycloaddition

B.-C. Hong et al., Org. Lett. 2003, 5, 10, 1689-1692.

X, X-Y = maleimide, maleic anhydride, p-quinones

17

Enantioselective Catalytic [6+3] Cycloaddition

Natural Products With Benzopyrone Scaffold

metallo-β-lactamase

Fulvic acid

A

Rotenone (natural insecticide)

opening

Extension of the Sequence to NP Scaffolds Related to Mitosis/Cancer

Tetrahydroindolo[2,3-a]quinolizines

Tryptamine Benzopyrone

Vinblastin antimitotic, anticancer drug **Yohimbine** anticancer activity

ÓН

10-Hydroxyaugustine cytotoxix to human T14 bladder-cancer cell line

One-pot Cascade Synthesis of Indologuinolizines $R^2O_2C \longrightarrow$ -CO2R R^2O R^2O_2C H⁺, toluene, 80° C, PPh₃ (0.6 eq.) 5-10 minutes 65-80% ⇒ One-pot synthesis. ⇒ Twelve consecutive transformations including nine different reactions. ⇒ Longest cascade sequence known. ⇒ Enantioselective catalysis.

Kumar, Waldmann et al., Nat. Chem. Biol. 2012, 8, 179

Synthesis of NP-Inspired Compound Collections

2010,2, 735

Angew. Chem. Int. Ed. 2008, 47, 6869

Angew. Chem. Int. Ed. 2012, 51, 9512

2013. 20. 500.

Angew. Chem. Int. Ed. 2014, 53, 2134

Angew. Chem. Int. Ed.

2011, 50, 9076

2012. 8. 428

Angew, Chem, Int. Ed., 2013, 52, 12404

Angew. Chem. Int. Ed. 2013. 52. 410

Proc Natl Acad Sci 2011, 108, 6805

Angew. Chem. Jpt. Ed., 2013, 52, 9576

Neutrophil Chase

Movie V. Brinkmann. MPIIR Berlin

- ⇒ Uptake of pathogen by the phagolysosome
- ⇒ Formation of reactive oxygen species (ROS)
- ⇒ Neutrophilic enzymes from granules (elastase, defensins)

⇒ Antimicrobial activity.

New Mechanism: Neutrophil Extracellular Traps

V. Brinkmann und A. Zychlinsky, Nature Reviews Microbiology, 2007, 5, 577 - 582

- NETs: formed via "netosis": ⇒Activation of NADPH oxidase ⇒ROS formation ⇒Lobules of neutrophils disappear ⇒Chromatin expands
- Extracellular structures that are composed of chromatin, with specific proteins from the neutrophilic granules attached, e. g. proteases.
- NETs bind to gram-positive & gramnegative bacteria as well as fungi

Need for Modulator Screen

Neutrophils:

⇒ Develop in the bone marrow

- ⇒ Reach circulation when they are terminally differentiated: half life of six hours
- ⇒ Due to short half life and developmental state: cannot be transfected or transduced.
- So available cell lines that faithfully mimic the characteristics of neutrophils. 29

Phenotypic NET Formation Modulator Screen

Automated microscopy and phenotype scoring!

Detection of cell death by Sytox Green incorporation into DNA of dead cells 30

Mitosis

32

Mitosis

Chromosome Misalignment

HeLa cells with histone H2B-GFP

Control

30 µM compound

35 Kumar, Waldmann et al., *Nat. Chem. Biol.* **2012**, *8*, 179

Cell Division

HeLa cells (cervical cancer)

Control

30 µM compound

34 Kumar, Waldmann et al., *Nat. Chem. Biol.* **2012**, *8*, 179

Spindle Formation During Mitosis

U2OS (osteosarcoma cells) with Cherry tubulin

Control

30 µM compound

Additional cell lines: COS-7, SW 480, MCF-7

36 Kumar, Waldmann et al., *Nat. Chem. Biol.* **2012**, *8*, 179

Phenotype: Impaired Centrosome Integrity

Chromosome misalignment. Metaphase plate impaired. Multipolar spindles – aberrant centrosome numbers. Centrosome integrity impaired!

Parent Indoloquinolizine Obtained from the One-pot Cascade

Modulator of centrosome duplication: Centrocountin 1

38 Kumar, Waldmann et al., Nat. Chem. Biol. **2012**, *8*, 179

Potential Targets: Educated Guesses

Target Identification: Chemical Proteomics

• Pulldown from HeLa cell lysate

Identification of bound proteins

Structure Activity Relationship (SAR) Analysis

Target Identification: Mass Spectrometry

Separation on 1D-SDS-Gel

Nucleophosmin (NPM)-Crm1-Complex

- Release of bound proteins from beads with free ligand
- Analysis of tryptic peptides by Nano-LC-MS/MS
- Identification of proteins by MS/MS ion search

42

Cellular Centrosome Counting

NPM and Crm1 Validation

Molecular Biology: immunoblot, competitive blot

NPM, Crm1 confirmed with specific antibodies Competition with free ligand

Biophysics: fluorescence polarization, surface plasmon resonance,

isothermal titration calorimetry, T_m-shift, ELISA

Concentration dependent polarization signal increase upon binding of fluorescent-tagged Centrocountin to NPM, Crm1

Genetics: RNAi knockdown

NPM, Crm1 knockdown: centrosome amplification (n>2); impaired Wang et al., *Nat.Cell Biol.* **2005**, *7*, 823 Zhang, C. et al., *Biochem. Biophys. Res. Commun.* **2009**, *384*, 383.

Cell biology/imaging: Interaction in cells

Fluorescence lifetime reduction for Citrine-NMP, YFP-Crm1 upon binding of fluorescent-tagged Centrocountin

Kumar, Waldmann et al., Nat. Chem. Biol. 2012, 8, 179

44

NPM Overexpression in Tumour Cells: Increased Proliferation and Inhibition of Apoptosis

S. Grisendi et al., Nature Reviews Cancer, 2006, 6, 493

NPM is overexpressed in gastric-, colon-, ovarian- and prostate carcinomas!

Opposes the apoptosis machinery be different mechanisms, e. g.: ⇒ Interacts with and inhibits apoptosis initiation by p53

⇒ Opposes DNA-fragmentation by caspase-activated DNAse (CAD)

45

K. Kumar, C. Hedberg, A. Antonchik

P. Ertl, A. Schuffenhauer, Novartis T. Oprea, Univ. New Mexico

D. Rauh, Univ. Dortmund

T. Mayer, Univ. Konstanz

T. Hyman, MPICG Dresden

A. Zychlinsky, MPI IB Berlin

H. Schöler, MPI VB Münster

D. Steinhilber, Univ. Frankfurt W. van Otterlo, Univ. Stellenbosch

A. Giannis, Univ. Leipzig

T. Berg, Univ. Leipzig C. Arenz, HU Berlin

S. Ziegler

M. Koch, S. Wetzel, S. Renner, B. Over

A. Noeren, I. Reis-Correa S. Basu, O. Barun, S. Sommer, T. Voigt, M. Sanz, M. Yoshida, H. Dückert, L. Eberhard, K. Wittstein, V. Khedkar, K. Galla, T.-S. Hu, R. Tannert, H. Tan, Y. He, W. Wilk, T. Knoth, L. Milroy, N. Martinez, T. Zimmermann, V. Vintonyak, A. Richter, M. Potowski, V. Eschenbrenner, P.-Y. Dakas, R. Narayan, P. Schröder, J. Svenda, M. Sheremet, D. Adithi, J. Ceballos, H. Takayama, A. Ursu

S. Menninger, V. Pries, H. Sun, S. Roy, C. Geerding-Reimers, T. Tran, S. Roy, K. Tschapalda, Y. Akbulut, P. Küchler, D. Illich, T. Förster, L. Kremer, S. Brandt

