

Utilizing a Ubiquitous (Non-)Functional Group – C-H Bond Activation for Increased Efficiency in Organic Synthesis

$$C-H \longrightarrow [C-M] \longrightarrow C-Y$$

Dehydrogenative (oxidative) Heck coupling

Schröder,[‡] Wencel-Delord,[‡] Glorius, JACS 2012, just accepted. [‡] These authors contributed equally.

See also: Fagnou et al. *J. Am. Chem. Soc.* **2011**, 133, 2330. Computat

Mild Rh(III)-Catalyzed C-H Activation and Intermolecular Annulation with Allenes

Mild conditions allow ...the C-H functionalization of a MOF

Dröge, Notzon, Fröhlich, Glorius, *Chem. Eur. J.* 2011, 17, 11974. Review on postsynthetic modification of MOFs: Cohen, *Chem. Soc. Rev.* 2010, *40*, 498. Review on mild C-H activations: Wencel-Delord, Dröge, Liu, Glorius, *Chem. Soc. Rev.* 2011, *40*, 4740.

UNDIRECTED!

Review: Kuhl, Hopkinson, Wencel-Delord, Glorius, Angew. Chem. Int. Ed. 2012, accepted for publication.

Fischer-Indole as role model for a CDC: our first C-H activation

From anilines to indoles:

A cross-dehydrogenative coupling (cdc)

Würtz, Rakshit, Neumann, Dröge, Glorius, Angew. Chem. Int. Ed. **2008**, 47, 7230 (hot paper). Neumann, Rakshit, Dröge, Glorius, Chem. Eur. J. **2011**, 17, 7298. For general reviews on the synthesis of indoles, see: Cacchi, Fabrizi, Chem. Rev. **2005**, *105*, 2873; Gribble, J. Chem. Soc., Perkin Trans. *1*, **2000**, 1045.

Comprehensive review: Yet in Comprehensive Heterocyclic Chemistry III, Vol. 4, Elsevier, 2008, 1.

Comprehensive review: Yet in Comprehensive Heterocyclic Chemistry III, Vol. 4, Elsevier, 2008, 1.

Suri, Jousseaume, Neumann, Glorius, Green Chem. 2012, DOI: 10.1039/C2GC35476D

Suri, Jousseaume, Neumann, Glorius, Green Chem. 2012, DOI: 10.1039/C2GC35476D

Ru-NHC-catalyzed asymmetric arene hydrogenation

Hydrogenation of Quinoxalines

TTALISCHE

VILHELMS-UNIVERSITÄ

Switching from Phosphines to N-Heterocyclic Carbenes (NHC):

 PR_3 no reaction Ru(cod)(2-methylallyl)2 solvent H₂

Ligand-controlled switching of regioselectivity!!!

Hydrogenation of Quinolines

WESTYÄLISCHE WILHELMS-UNIVERSITÄT

N N Ph 1a		Ligand, KO ^r Bu Ru(cod)(2-methylallyl) ₂		N Ph + 2a		$ \begin{array}{c} $
Entry	Ligand	Solvent	T [°C]	H ₂ [bar]	Yield [%] 2a 3a	e.r.
1	PCy ₃	toluene	80	60	0 0	n.d.
2	SIPr	toluene	80	60	<1 99	n.d.
3	4a	toluene	80	65	99 <1	38:62
4	4b	toluene	80	65	99 <1	64:36
5	4c	toluene	80	65	99 <1	83:17
6	4c	toluene	40	65	99 <1	84:16
7	4c	hexane	40	65	99 <1	85:15
8	4c	hexane	30	65	0 0	n.d.
9	4c	hexane	40	20	99 <1	88:12
10	4c	hexane	40	10	<13 0	n.d.
11 ^[a]	4c	hexane	25	10	99 <1	90:10
12 ^[a]	4d	hexane	25	10	(99 <1)	94:6

Heterocycles, heterocycles, heterocycles

Kaiser, Smidt, A. Pfaltz, Angew. Chem. Int. Ed. 2006, 45, 5194.

NHC-catalyzed hydroacylations

Biju, Kuhl, Glorius, Acc. Chem. Res. 2011, 44, 1182. Bugaut*, Glorius*, Chem. Soc. Rev. 2012, online.

Hirano, Biju, Piel, Glorius, J. Am. Chem. Soc. 2009, 131, 14190.

Piel, Steinmetz, Hirano, Fröhlich, Grimme,* Glorius,* Angew. Chem. Int. Ed. 2011, 50, 4983 (VIP).

Asym. intermol. hydroacylation to electron-neutral olefins

Piel, Steinmetz, Hirano, Fröhlich, Grimme,* Glorius,* ACIE 2011, 50, 4983 (VIP). Bugaut, Liu, Glorius, J. Am. Chem. Soc. 2011, 133, 8130. See also: Biju, Kuhl, Glorius, Acc. Chem. Res. 2011, 44, 1182.

Scope

••Ph

Select examples (from total of 19 examples; 16 examples with ees in the 90ies):

Me Ph F₃C

3b, 91%, dr>20:1, 94% ee **3c**, 93%, dr>20:1, 94% ee **3d**, 74%, dr 12:1, 92% ee **3e**, 82%, dr 12:1, 90% ee

MeC ••Ph MeO₂C

3f, 72%, dr 20:1, 61% ee **3g**, 78%, dr>20:1, 93% ee **3h**, 87%, dr>20:1, 96% ee **3k**, 70%, dr>20:1, 93% ee

3n, 82%, dr>20:1, 90% ee **3o**, 83%, dr 12:1, 91% ee

3p, 83%, dr>20:1, 94% ee **3r**, 95%, 92% ee

