

Organic synthesis today....

Synthesis of 4-vinyl-THCs and -THBCs

$\begin{array}{c} HO\\ \hline \\ \hline$							iphep ⊱Ph
Entry	R/R ₁ /X	Y (%)	Ee (%)	Entry	R/R ₁ /X	Y (%)	Ee (%)
1	Me/H/C(CO ₂ Et) ₂	79	86	6	Me/H/NTs	75	80
2	Me/H/C(CO ₂ tBu) ₂	80	80	7	Me/Cl/NTs	93	79
3	Me/H/C(CO ₂ Me) ₂	87	74	8	Me/Me/NTs	75	80
4	Me/OMe/C(CO ₂ Et) ₂	55	83	9	Me/OMe	61	76
5	Me/Me/C(CO ₂ Et) ₂	87	80	10	Allyl/H/NTs	72	78

. Eichholzer, M.B. AC/E. 2009, 48, 9533 (VIP article, Synfacts, 2010, 3, 313) Romaniello, M.B. J.Organomet.Chem. 2011, 696, 338

Intramolecular asymmetric allylic oxyalkylation

Electrophilic **Au(I)**-activation of alkenes: new opportunities in asymmetric catalysis

Coordination mode insights

Coordination mode insights

catalysis stereoinduction

Intramolecular approaches:

- MacMillan organocatalysis (sylanes-2011)
- Saicic Pd-catalysis (phosphates-2009)

Intermolecular approaches:

- List organo-metalcatalysis (amines-2007)
- Palomo organocatalysis (bromides-2011)

What about allylic alcohols ??

Scope of the reaction

		н	[Au] (10 mol%) MacMillan's I (20 mol%) PhCO ₂ H (20 mol%) THF _{wel} , rt, 16-24 h	6) H ,=	
	entry	X/n	Yield (%)	Dr trans:cis	Ee (%)
	1	C(CO ₂ Me) ₂ /1	78	2.3:1	84 (84)
	2	C(CO ₂ tBu) ₂ /1	90	2.6:1	91 (85)
0	3	C(CO ₂ Bn) ₂ /1	78	2.2:1	89 (88)
#~ \ _	4	C(CO ₂ Et) ₂ /1	71	2.3:1	96 (85)
`x≦	5	NSO ₂ Mes/1	53	5.1:1	94 (88)
	6	NCO ₂ Me/1	53	9:1	98 (98)
н-{	7	NCbz/1	83	16:1	97 (85)
	⇒ 8	NTs/2	33	20:1	98 (-)

M. Chiarucci, M.B. Chem.Sci. 2012, 3, 2859-2863

MA MATER STUDIORUM - UNIVERSI

Secondary alcohols Evidences for Kinetic Resolution

Run	Subst.	cat	Yield (%)	Dr trans:cis	trans (E:Z)	cis (E:Z)	Ee (%)
1	racemic	Т	57	4.9:1	57:43	48:52	-30 (-31)
2	racemic	П	25	4:1	97:3	70:30	87 (82)
3	(S) [ee = 85%]	Ш	42	49:1	>99:1	75:25	98 (76)
4	(R) [ee = 84%]	Ш	traces				

M. Chiarucci, M.B. Chem.Sci. 2012, 3, 2859-2863

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

Reaction Machinery

Gold Catalyzed Cascade Reactions: propargylic alcohols

A. Echavarren, et al. *Chem.Eur.J.* **2007**, *13*, 1358 A. Echavarren, et al. *Tetrahedron* **2009**, *65*, 9015

Chemical flexibility of tertiary propargylic alcohols

i) Hydroamination 5-endo-dig ii) Alkoxyalkylation

M. Chiarucci, unpublished

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA