Total Synthesis of polycyclic Natural Products – beyond Biogenetic Relationships

IASOC 2016 Sept 28th 2016 Tanja Gaich University of Konstanz

Generalized Total Synthesis of Sarpagine and Stemona Alkaloids

S. Krüger

IASOC 2016 Sept 28th 2016 Tanja Gaich University of Konstanz

Privileged Intermediate

Isolation Sarpagines

4

- Apocynaceae (Catharantheus roseus)
- "Rosy-periwinkle" or "old maid"
- · Madagaskar (endemic)
- Ethnomedicine: Diabetes, Malaria,
 Hodgkin's Lymphoma

Syntheses: J. Cook J. Org. Chem, 2013, 6756. S. F. Martin *et al.*, J. Am. Chem. Soc., 2003, 125, 15, 4541-4550.

Biosynthesis

Sarpagine Family Members

Additional Rings
Variation at C-16

- Oxidation of Indole
- Dimer-products

Retrosynthesis

Pd-catalyzed enolate coupling

M. Braun, et al. Angew. Chem. Int. Ed. Engl. 2006, 45, 6952.

Synthesis of (Z)-1-bromo-2-iodo-2-butene:

a) Ensley, H. E.; *et al. J. Org. Chem.* **1982**, 47, 404.
b) Corey, E. J.; *et al. J. Am. Chem. Soc.* **1970**, 92, 6314.

A. R. Katritzky et al. Chem. Rev., 1989, 89, 827-861.

 Θ

Synthesis of vinyl-sufoxide: V. K. Aggarwal, *et al. Org. Biomol. Chem.*, 2003, 1, 1884-1893.

Key-Steps

[5+2]-oxido-pyridiniumion cycloaddition

Ring-enlargement (Tiffeneau-Demjanov)

Demjanov, N. J.; et al. J. Russ. Phys. Chem. 1903, 35, 26-42.

Synthesis of [5+2]-Precursors

Enantioselective Synthesis of dipolarophile

a. H. Firouzabadi et al., JOC, **2001**, 66, 7527-7529 **b.** V. K. Aggarwal et al., JOC, **1995**, 60, 4962-4963 **c.** M. E. Krafft, J. W. Cran, Synlett, **2005**, 8, 1263–1266 **d.** J. M. Cook et al., TL, **2010**, 51, 815–817 **e.** T. P. Loh et al., TL, **1998**, 39, 1453–1456 f. J. M. Cook et al., TL, **2003**, 44, 8013-8017

Selectivity in the [5+2]-CA

V. K. Aggarwal et al., Org. Biomol. Chem., 2003, 1, 1884-1893. A. R. Katritzky, *et al.* Chem. Rev., 1989, 89, 827-86.

The Total Synthesis

Generalized Synthesis

Privileged Intermediate

Isolation and Origin

From Stemona parviflora 2003
China (endemic)
Chinese medicine: antitussive, and insecticide

1 completed racemic total synthesis: Chen, Z.-H.; Tian, J.-M.; Chen, Z.-M.; Tu, Y.-Q. *Chem. Asian J.*, **2012**, *7*, 2199-2202 Isolation of Parvineostemonine: C. Q. Ke, Z. S. He, Y. P. Yang, and Y. Ye, *Chin. Chem. Lett.*, **2003**, *14*, 173.

Stemona Family Members

• Diverse skeleton • ca. 130 Congeners • Tropan system

a.) Pilli, R. A.; Rosso, G. B.; Ferreira de Oliveira, M. da C. Nat. Prod. Rep. 2010, 27(12), 1908-1937. b.) Greger, H. Planta Med. 2006, 72, 99-113.
c.) Pyne, S. G.; Ung, A. T.; Jatisatienr, A.; Mungkornasakwakul, P. International Journal of Science and Technology, 2007, 1(2), 157-165.
d.) R. A. Pilli, G. B. Rosso, M. C. F. de Oliveira in The Alkaloids, Vol. 62 (Ed.: G. A. Cordell), Elsevier, New York, 2005, pp. 77–173;

Retrosynthesis

Symmetry Properties of Regioisomers

The Total Synthesis

The Total Synthesis

Mechanism of spiro-annelation

Conclusion I

Enantiomers

Enantiomers

Both Regiomers used 12 over all steps => Enantiodivergent Synthesis

Conclusion II

The Leuconoxine Family -Photochemical C-H-Activation

IASOC 2016 Sept 28th 2016 Tanja Gaich University of Konstanz

Structural Analysis

Signature Structure Elements:

[5.5.6.6] fenestrane structure
Indole / tryptamine unit
Secologanin sub-unit
3 Stereocenters
1 Quaternary carbon atom
Central Aminal of fenestrane

leuconoxine

Completed total syntheses:

a) Z. Xu, Q. Wang, J. Zhu, J. Am. Chem. Soc. 2013, 135, 19127 – 19130; b) A. Umehara, H. Ueda, H. Tokuyama, Org. Lett. 2014, 16, 2526 – 2529;

c) Y. Yang, Y. Bai, S. Sun, M. Dai, Org. Lett. 2014, 16, 6216 – 6219;

d) K. Higuchi, S. Suzuki, R. Ueda, N. Oshima, E. Kobayashi, M. Tayu, T. Kawasaki, Org. Lett. 2015, 17, 154 – 157.

Retrosynthesis I

Wittig-Olefination

Gassman indole synthesis

Key Features

Transannular Cyclization

Wilkop Cyclization

Mechanism

Completely diastereoselective !

An Analysis Altempt...

Where does the selectivity come from?

Allyl preferred in axial
neo-Pentyl positions identical
steric hindrance sp2 vs sp3
and/or Π-Π-interaction

2nd Approach

Adaptation of the System:

Completion of the Total Synthesis:

1