High-Throughput Screening (HTS) by Immunoassay Tests

Service de Marquage Moléculaire et de Chimie Bioorganique CEA Saclay

Service de Pharmacologie et d’Immunologie CEA Saclay (J. Grassi)

Laboratoire de Synthèse Bioorganique UMR 7514 ULP / CNRS Illkirch

High-Throughput Synthesis and Screening (HTS)

- HT Synthesis of molecules, catalysts, materials ...
- HT Screening for: molecules, macromolecules properties (biological, physical) (pure compounds or mixtures)
HTS by immunoassay tests

- HTS for enantioselective catalysts: yields & ee's
- HTS for antioxidants: protective agents against oxidative stress, selection of Norbadione A
- Total synthesis of Norbadione A

Structure of an antibody
Generation of poly- and monoclonal antibodies (Ab)

Chemistry
- Synthesis of the immunogen
- Synthesis of a functional derivative of H
- H₂N → BSA
- H → BSA

Biology
- Injection of the immunogen
- Polyclonal response
- Selection of the mouse with the best response
- Cell fusion
 - ~ 10³ hybridomas
 - selection of anti-H Ab
- Multiplication by cloning
 - ~ 10 Monoclonal Ab
 - anti-H

Competitive EIA
(Enzyme ImmunoAnalysis)

- Capacity > 1000 analysis/day
- Capture
- Wash
- S
- Color (DO): Ellman reagent
- E = Acetylcholinesterase (AChE)
Competitive EIA
(Enzyme ImmunoAnalysis)

\[\text{Y} + \text{K}^* \rightarrow \text{K} \]
\[B/B_0 \]

\[\text{B/Bo} \]

DO max

\[\text{Log } [\text{H}] \]

\[\text{Ellman reagent} \]

\[\text{Acetylcholinesterase (AChE)} \]

Color (DO): Ellman reagent

Principle of AChE detection with Ellman reagent

Acetylcholinesterase

Acetylcholine + Ellman reagent → YELLOW COLOR

Reading of the DO
New chemoluminescent probes

Design and synthesis of chemoluminescent probes for the detection of cholinesterase activity
P.Y. Renard

Screening for new catalysts

A Catalyst B

Classical approach

Conception of a catalyst
Synthesis
Evaluation

Combinatorial approach

Conception of a library of catalysts
High-throughput screening
Parallel Synthesis
Asymmetric catalyst

Combinatorial chemistry

\[R\text{COOH} \rightarrow \text{Asymmetric catalyst} \rightarrow R\text{COOH} + R\text{HO}COOH \]
5 AB recognize both enantiomers of MA
5 AB are selective for MA-S
1 AB is selective for MA-R

11 Monoclonal antibodies (Ab)

Combinatorial chemistry

Asymmetric catalyst

yield

yield

ee
Conception catalysts’ library

4 M =
(2 solvents)

[RuCl₂(p-cym)]₂
[RuCl₂(p-benz)]₂
[RhCl₃(Cp)]₂
[IrCl₂(Cp)]₂

2 Sources of hydrogen

HCOOH/TEA
KOH/iPrOH

6 Solvents

DMF, DMF/H₂O, EtOH, DMSO
DMF/EtOH, DMF/DMSO

22 Ligands

NHR₁
NHR₂

Screening results

Yields

0-10% 10-30% 30-50% 50-70% 70-90% 90-100%

ee(S)

0-10% 10-30% 30-45% 45-60% 60-75% 75-90%

High-Throughput Screening of Enantioselective Catalysts by Immunoassay.
HTS tests for the ee determination

- IR thermography (Reetz and coll. 1999)
- Capillary array electrophoresis (Reetz and coll. 2000)
- CD-HPLC (Mikami and coll. 2001)
- Electrospray ionization with isotopically labeled substrates (Reetz and coll. 1999)
- Immunoassay

HTS

- HTS for enantioselective catalysts: yields & ee’s
- HTS for antioxidants: protective agents against oxidative stress; selection of Norbadione A
- Total synthesis of Norbadione A
Protections against the oxidative stress

- Radioprotectors
- Decorporation
- Antioxidants
- UV radiations
- Free radicals: 'OH, OOH, O₂⁻
- Chelates
- Fe; Cu

Oxidative Stress

- Active Oxygen Species
- DNA strand break
- Abasic site formation
- Base degradation
- Addition of lipid peroxidation products
- PROTEIN
Antibodies’ generation

3 monoclonal antibodies

Thymidine

Antibodies’ generation

Log [Thymidine] [µM]

B/Bo (%)

0.01
0.1
1
10

10,0

25

50

75

100

mAb-62

High-throughput screening of new protective agents against oxidative stress

Fe/EDTA

137Cs

UV

H₂O

H₂O₂

HO⁻ ; HOO⁻

= Protective agent

= Degradated thymidine

- Competitive binding
- wash

- Competitive binding
- wash
Strategy for the discovery of new protective agents against oxidative stress

Lead optimisation for the synthesis of analogs

Toxicological evaluations
Physical determinations
Mechanism of action studies

Biological activities:
- anti-inflammatory
- anti-proliferative
- anti-cancer
- anti-aging
- radioprotective

Tests:
Cellular
Tissular
In vivo

different sources:
Plants, mushrooms, algaes...

Extraction
Synthesis

Libraries of Molecules

in vitro screening antioxidant activity

Mushroom extracts – UV degradation tests

Extractions:
- MeOH / Acetone / HCl
- CHCl3 then MeOH

Experimental conditions:
Thymidine (70µM) ; H2O2 (5mM) ;
irradiation at 254nm 1.75 J/cm²
Tp Phosphate 25mM pH 7.4

% of thymidine protection

Sarcodon Repandum
Cantharellus Cibarius
Pleurotus Ostreatus
Amethystus
Pisolithus Tinctorus

Norbadione A
Oxidative stress

- 70 commercial molecules
- 10 synthetic molecules
- 10 natural extracts

tested in 4h
1 highly efficient molecule found

Protection (%)
- 0-10%
- 10-30%
- 30-50%
- 50-80%
- 80-100%

Norbadione A

Antioxidative properties

Thymidine 70 μmol
UV 254nm 1.75 J/cm²
H₂O₂ 5mM in H₂O
antiox. 100 μmol

FeSO₄ 0.35 μmol +
H₂O₂ 35 μmol in H₂O

γ Ray 3h

1- Norbadione
2- Quercitine
3- Fisetin
4- Myricetin
5- Catechin
6- 4-hydroxy-4-methyl-8-nitrocoumarine
7- Trolox
DNA protection against \(\gamma \) radiations

Plasmide pUC18, phosphate buffer pH 7.4
Irradiation \(^{137}\)Cs, 30 min. (60Gy)

Norbadione Analogue

Radio- & chemoprotecting effects of Norbadione A

X Rays

Cisplatine

Survival rate of cells increased with Norbadione A

Gyotoxicity of cisplatine lowered by Norbadione A
Mushrooms and radioactivity

- In 1986, radioactive particles from the electrical plan of Tchernobyl contaminated several European countries including several French regions. Bolet bai, a commestible mushroom, contains high concentrations in cesium 137.
- In 1989, Steglich found that cesium 137 is selectively localised in the pigments present on the top of the mushroom in association with norbadione A.
- Norbadione A can be extracted in higher quantities from another mushroom Pisolithe (M. Gill).

Cesium complexation by Norbadione A: mass spectrum studies

- Speciation of norbadione in presence of Cs⁺
- The reaction of Norbadione A with cesium ions can form 1:1 and 1:2 complexes.
- The dissociation constants are: $\beta_1 = 4.9 \text{ l.mol}^{-1}$ for the 1:1 complex and $\beta_2 = 9.5 \text{ l.mol}^{-1}$ for the 1:2 complex.
Decontamination by decorporation with a chelating agent

Individual contaminated by the radioelement

Absorption of Norbadione A

Elimination of the Norbadione complexed cesium in the urine and faeces

Norbadione A, a radioprotective agent with a double mechanism of action:

1- detoxification by specific chelation and elimination of ^{137}Cs (decorporation)

2- antioxidant properties to capture the reactive oxygen species generated by γ Ray emitted from ^{137}Cs
HTS

- HTS for enantioselective catalysts: yields & ee’s
- HTS for antioxidants protective agents against oxidative stress selection of Norbadione A
- Total synthesis of Norbadione A

Norbadione A: retrosynthetic scheme

[Diagram showing the retrosynthetic scheme of Norbadione A with reactions and structural formulas]
Conclusions

- Two high-throughput screenings (HTS) by immunoassay tests for the selection of:
 - catalytic systems
 - selection of highly active antioxidant agents

- Total synthesis of Norbadione A a potent radioprotective agent selected by HTS immunoassay tests
Acknowledgments

<table>
<thead>
<tr>
<th>SMM</th>
<th>Thierry Le Gall</th>
<th>Alain Valleix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frédéric Taran</td>
<td>Marine Lesage</td>
<td>Céline Caussignac</td>
</tr>
<tr>
<td>Stéphane Meunier</td>
<td>Stephanie Nowaczyk</td>
<td></td>
</tr>
<tr>
<td>Jean-Michel Siaugue</td>
<td>Sophie Dézard</td>
<td></td>
</tr>
<tr>
<td>Sophie Dézard</td>
<td>Jean-Marie Gomis</td>
<td></td>
</tr>
<tr>
<td>Jean-Marie Gomis</td>
<td>Pierre-Yves Renard</td>
<td></td>
</tr>
<tr>
<td>Pierre-Yves Renard</td>
<td>Stéphane Sabelle</td>
<td></td>
</tr>
<tr>
<td>CNRS</td>
<td>Alain Wagner</td>
<td>Barbara Mohar</td>
</tr>
<tr>
<td>Laure Buscarlet</td>
<td>Jacques Grassi</td>
<td></td>
</tr>
<tr>
<td>SPI</td>
<td>Philippe Pradelles</td>
<td>Christophe Créminon</td>
</tr>
<tr>
<td>Hervé Volland</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Validation of the Enzyme Immuno Assays (EIA)

Validation on \(n = 42 \) samples

\[
y = 0.9836x - 0.464 \\
R = 0.9324
\]

\[
y = 1.0312x - 0.464 \\
R = 0.9024
\]

Antioxidant Tests

Radical sources

Target molecule

degradation products

+ Antioxidant

<table>
<thead>
<tr>
<th>idem but</th>
<th>higher conc. of unaffected target</th>
</tr>
</thead>
<tbody>
<tr>
<td>conc. determination of the unaffected target</td>
<td></td>
</tr>
</tbody>
</table>

Immunoanalysis

- Concentration determination of one of the oxidized product
- idem but signal inhibition

HPLC UV Abs. Electrophoresis RPE Luminescence
Tests for the evaluation of antioxidant properties of single compounds or mixtures

- TBA method (thiobarbituric acid): inhibition of the oxidation of deoxyribose (1959)
- HPLC: inhibition of the hydroxylation aromatic compounds (1984)
- TRAP method (total peroxyl radical trapping parameter) (1987)
- RPE: inhibition of the DMPO-OH radical generation (1990)
- Randox-TEAC method (Trolox equivalent antioxidant capacity): decoloration of the ABTS radical (1993)
- Electrophoresis: inhibition of the split of DNA strand (1993)
Degradation by Radiolysis

- Irradiation: 1h – 150 Gy
-

\[
\text{Thymidine eq. (µM)}
\]

- HPLC

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU (267nm)</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.05</td>
<td>0.1</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Fenton type degradation

- Fenton: Fe/EDTA/H$_2$O$_2$ (1:1:100) 5min.

\[
\text{Thymidine eq. (µM)}
\]

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU (267nm)</td>
<td>0.2</td>
<td>0.15</td>
<td>0.1</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- EIA

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Thymidine] eq. (µM)</td>
<td>0.6</td>
<td>0.4</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
PdCl₂(dppf), cat. Na₂CO₃ aq. THF, reflx, 3h 63%