

Roche

Examples for Recent Successes in Drug Discovery

Torsten Hoffmann, September 25-29, IASOC 2010

A Brief Look Back

The Way We Work Today

Outlook Into Our Future

2

How Were Benzodiazepines Discovered? "The Benzodiazepine Story", Leo Sternbach

- 1955: Tranquilizers showed considerable clinical value
- Produce a novel, patentable compound with superior properties
- Pharmacological effects of Librium first discovered in animals in May 1957
- ca. 15'000 patients treated by 1960
- NDA submitted in 1960
- Valium as "second generation" was introduced in 1963

Another Complication: Polypharmacology Receptor binding $(K_i [nM])$ olanzapine and clozapine

	Olanzapine	Clozapir
D_1	31	85
D_2	11	125
D_4	27	21
5HT _{2A}	4	12
5HT _{2C}	11	8
5HT₃	57	69
m ₁	1.9	1.9
m_2	18	10
m_3	25	14
m ₄	13	18
α_1	19	7
α_2	230	8
H ₁	7	6

[F.P. Bymaster et al., Neuropsychopharm. 1996, 14, 87-96]

A Brief Look Back

The Way We Work Today

Outlook Into Our Future

6

Identification of Entry Points in Chemistry All methods used in an unbiased manner

HTS

- Increased quality through more counter screens
- Impact of external vendor's libraries seen since 2001
- Increased success rate in chemistry

Focused Screening

- Firmly established
- Multiple methods for subset selection

Literature, Patents

 Traditionally high success rate

Target family ("Chemogenomics")

- Basel: focus on GPCRs
- SST5 first example

Molecular Design

- Used wherever adequate
- Interactive

The Way We Work The multidimensional optimization concept

Sequential Testing

Parallel Multiobjective ("MDO")

Increased productivity through

- Addressing key issues early
- Avoiding optimization dead-ends
- Saving cost

7

Typical, Iterative and Parallel Screening Cascade

RG1678: A Potent and Selective GlyT1 Inhibitor for the **Treatment of Schizophrenia**

Antipsychotic treatment with the potential to improve both, positive and negative symptoms in schizophrenia patients

Benzoylpiperazine Hit identified through HTS A good starting point

Physico-chemical properties:

	Selectivity
	hGlyT2 EC ₅₀ [μM]
	Metabolic Stability:
5 NO	Cl. (mic.) [µl/min/mg
F NO ₂	Cl. (mic.) [µl/min/mg
hClvT1 EC [uM] 0.015	

	LogD	2.36
E	Solubility [µg/ml]	9
5	PAMPA [10 ⁻ 6cm/s]	4.7

DMPK, mouse:

bility:

<u>*</u>	
l. (mic.) [μl/min/mg], Human	35
Cl. (mic.) [µl/min/mg], mouse	106

Cl. (i.v.) [ml/min/kg]	66
F (%)	10

11

hGlyT1 EC₅₀ [μM] 0.015

In Vivo, L687,414, mouse ID50 (mg/kg) ip

- √ High GlyT1 potency
- √ Simple structure- Fast chemistry
- ✓ Overall, attractive profile
- **Nitro Group (potential for mutagenicity)**
- × High metabolic clearance / Low F%, No oral activity

Finding a Replacement for the Nitro Group Best surrogate identified: methylsulfone

Exploration of SAR at morpholine and western Ar ring *Large scope; Best profiles with alkoxy derivatives*

Optimization of hERG and oral in vivo activity *Heteroaromatic switch and Fluorine addition*

- √ Aryl to Heteroaryl switch reduces hERG
- √ Beneficial effect of Fluorine on brain penetration / in vivo activity
- ✓ Great and optimal profile with 3-F, 5-CF₃ pyridine-piperazine fragment

14

RG1678

An excellent overall profile

GLYT1 EC ₅₀ [μM]	0.03
GLYT2 EC ₅₀ [μM]	>30
Cerep: 92 receptors, at 10 μM	Clean

Physico-chemical properties:

LogD	3.03
Aqueous solubility [μg/ml]	1
FaSSIF solubility [μg/ml]	20
FeSSIF solubility [μg/ml]	60
PAMPA [10-6 cm/s]	3.2

In vitro safety profile

Cyps IC ₅₀ [μM]	>24
hERG IC ₅₀ [μM]	17
Genotox assays: Ames, MNT	Neg.
Phototoxicity	Neg.

PK properties:

	Rat	Cyno	Human
CL. (i.v.) [ml/min/kg]	4.3	3.6	1*
Vss (L/Kg)	3.58	1.98	3.6*
T1/2 (h)	5.8	6.4	40*
F (%)	78	56	
Brain/Plasma	0.7		
Protein Binding	97	97	98

In Vivo * predicted

L-687,414, ID ₅₀ mg/kg	0.5	
Fold increase glycine 10 mg/kg po	2.3	15

RG1678

A highly optimized GlyT1 inhibitor

✓ Each group has specific role and contribute to the overall excellent compound profile

RG1678

First potent and selective, clinically efficacious GlyT1 inhibitor

- Phase I in healthy volunteers:
 - Safe and well tolerated
 - Excellent PK profile
- Phase II in schizophrenic patients stabilized with antipsychotics with prominent negative symtoms:
 - Safe and well tolerated
 - Positive Phase II results annonced in Nov. 2009:

RG1678 improved the negative symptoms of patients with schizophrenia

Phase III scheduled for 2010

17

ALEGLITAZAR, A POTENT AND BALANCED DUAL PPARα/γ AGONIST FOR THE TREATMENT OF TYPE II DIABETES

Combine the fuel storing and insulin sensitizing effect of PPARy with the fuel burning, lipid modulating effect of PPARa

Prevalence estimates of diabetes, 2025

SOURCE: DIABETES ATLAS THIRD EDITION, © INTERNATIONAL DIABETES FEDERATION, 2006

Rivoglitazone (Daijchi Sankvo)

Competitive Landscape

Tesaglitazar (Astra Zeneca)

Balaglitazone (Dr. Reddy, Novo Nordisk), Phase 3

X-Ray Guided Rational Design

 $\begin{array}{c} \textbf{PPAR}\alpha\\ \textbf{AZ242=Tesaglitazar}\\ \textbf{IC}_{50}~\alpha/\gamma/\delta~[\text{nM}]~653/345/>10^4 \end{array}$

X-Ray Guided Rational Design

Roche

PPARα AZ242=Tesaglitazar IC_{50} α/γ/δ [nM] 653/345/>10⁴

ΓΡΆΚ γ GW2570=Farglitazar IC₅₀ α/ γ /δ [nM] 341/1/471 PPAR δ GW501516 IC₅₀ $\alpha/\gamma/\delta$ [nM] 133/>10⁴/1

HO S S N F F

Several residue differences in the ligand binding pocket affect substructure selectivity

-00

Modeling Supported Synthetic Strategy

o-Substituted Phenylpropionic Acids *A promising subclass*

Fine tuning for optimal balance and potency

Phenylpropionic Acids Linker length optimzation

PPARα/γpotency ratio around 1 with C₁-O linkage

25

27

X-Ray of Edaglitazone Another source of inspiration

hPPARγco-crystal x-ray structure

Edaglitazone

PPAR	α	γ	δ
IC ₅₀ [nM]	5720	12	n. d
EC ₅₀ [nM]	n. d.	70	n. d

Explore and exploit bicyclic spacers

26

Phenylpropionic Acids with Bicyclic Linker

PPARα/γratio close to 1 with benzothiophene Absolute potency excellent

Screening the Alkoxy Chain

Limited space in α -receptor, but butenyl can accommodate

57 (105)

Aleglitazar Preclinical DMPK profile

Safety (in vitro)

In vitro Activity	IC_{50} α/γ/δ [nM]	35 / 66 / 21
	$EC_{50} \alpha/\gamma/\delta [nM]$	53 / 32 / 444 (22%)

Physicochemical	Solubility	15μg / mL	8000 μg / mL (pH 9)
Properties	Log D	1.18	mp. 153°
	Caco-2	34.5 x 10-6 cm / sec	

Pharmacokinetics	Total clearance	6.2 ml/min/kg		1.6 ml/min/kg
(Rat)	Vss	1.3 l/kg	(Primate)	0.4 l/kg
	Bioavailability	70 %		68 %

hERG	negative
Ames/MNT	negative
Phsopholipidosis	negative
Phototoxicity	negative

Comparison of Aleglitazar and Edaglitazone $hPPAR\gamma LBD$

Aleglitazar

Edaglitazone

In vivo Efficacy: T2D Model-1 Efficacy on glucose lowering

29

Treatment of db/db mice for 12 days

In vivo Efficacy: T2D Model-2 Efficacy on insulin sensitization

Roche

Treatment of Zucker fa/fa rats for 7 days

10

776

1 mkd

773 ng/ml

Relative insulin resistance

3

2677

In vivo Efficacy: T2D Model-3 Efficacy on insulin lowering

In vivo Efficacy: Dyslipidemia Model-1 *Efficacy on triglycerides*

34

In vivo Efficacy: Dyslipidemia Model-2 Efficacy on HDL in human ApoAI-transgenic mice

In vivo Efficacy: Dyslipidemia Model-3 Efficacy on lipoprotein profile in HF rats

In high fat fed rats Aleglitazar is strongly decreasing LDLc and weakly increasing HDLc

Aleglitazar has an Outstanding Efficacy Profile in (Pre-) Diabetic rhesus monkeys

6-week, 0.03 mg/kg/day;
 AUC 300 ng·mL/h:

• Effects on hyperglycemia and insulin resistance

- HbA1C (BL 8.4%)	- 2.1%
- Fasting plasma glucose	- 17%
- Fasting insulin	- 60%
The state of the s	

· Anti-dyslipidemic effects

Anti-dyshpideniic enects		
- TG + VLDLc	- 88%	
- HDL-C	+ 111%	
(sdHDLc: - 58%)		
- LDL-C	-37%	
(large LDLc: + 110%)		

Tendency for lowering blood pressure

Summary

- X-Ray supported semirational design led to novel bicyclic aryl-propionic acid series, showing high and balanced agonistic activity towards both PPARα and γ.
- Side chain variations within this series allowed to fine tune absolute potency and relative PPARα/γ ratio.
- Many molecules exhibit excellent physicochemical and pharmacokinetic profiles.
- Selected compounds show high efficacy in in vivo models of T2D and dyslipidemia.
- Aleglitazar was chosen for clinical development.
- X-Ray structures confirm its smooth fit into both binding cavities.
- Completed Phase I and II studies look very promising with efficacious dose 150 μg/day.
- Phase III studies ongoing: Cardioprotective antidiabetic treatment for CV risk patients

37

20

A Brief Look Back

The Way We Work Today

Outlook Into Our Future

Future Trends of Discovery Chemistry *The classical approach*

- **Future Trends of Discovery Chemistry**
- Roche

- Microfluidics from flow chemistry to flow biology
- · Chemically diverse, high quality screening library
- Novel building blocks and functional groups e.g. "modules"
- Chemogenomics and scaffold hopping
- Early availability of 3D target structure
 - virtual screening
 - de novo design
 - fragment-based screening
- Effective tools to drive SAR/SER
 - predictive high-throughput tests, in vitro and in vivo
 - in silico prediction tools

The broadened approach

- Phenotypic screening, e.g. insulin resistant pancreatic beta-cells
- SER by in vivo pharmacology approaches using computational algorithms
- SER/SAR-based knowledge management for "pattern recognition"
- Intracellular delivery of polar macromolecules
 - cell penetrating peptides
 - siRNA conjugates delivered through endocytosis
- Regenerative medicine
 - mechanisms for cellular self-renewal
 - iPS cells from somatic cells and redirection of cell fate
- RNA as drug target
 - small molecules that regulate gene expression
 - rRNA, tRNA, mRNA 5'UTR binding molecules

41

42

Acknowledgments

All colleagues in Roche chemistry

GlyT1: Emmanuel Pinard and team Aleglitazar: Peter Mohr and team

We Innovate Healthcare