

Nine IASOCs and Counting ... Reflections on the Past; Prospects for the Future

Stephen Hanessian

IASOC 2000 Thursday, September 28 ISCHIA

Some Organic Chemistry Highlights and Potential Impacts

• Asymmetric Processes

Catalysis by transition metals and designed ligands Auxiliary or reagent-based stereoselectivity

Methodology

Transition metal chemistry in bond formation Olefin metathesis Solid phase chemistry (revisited)

- Total Synthesis
- Bioorganic and Medicinal Chemistry

DNA, RNA recogition Structural biology and drug design Genomics, proteomics, etc. Glycochemistry

• Supra and Supermolecules

Organized self-directed assemblies Nanotechnology Material science and polymers

NATURAL PRODUCT CONQUESTS BY TOTAL SYNTHESIS

IONOMYCIN Ca salt

MeO

MEMORIES...

$$OH$$
 H
 H
 S
 NH_2
 CO_2H
 $THIENAMYCIN$

RESERPINE

TOTAL SYNTHESIS IN THE Y2K AND BEYOND

EXPECTATIONS:

- Size, stereocenters, intricacies, novelty, elegance, practicality, etc.
- Acceptance

IMPACT:

- Biology, medicine, science, mankind
- Recognition

METHODOLOGY:

- Innovation, generality, utility
- Technology transfer, applications

LESSONS LEARNED:

- Coworker training, logic, observations, failures turned into success
- Etc, etc, etc,

A Synthesis Chemist's Wish List

• In the lab

- 1. 100 % yield, 100 % stereoselectivity (O.K., 99% will do)
- 2. No protective groups
- 3. Universally applicable reagents
- 4. A catalytic version for every asymmetric reaction
- 5. Orthogonal reactivity and selectivity
- 6. Reactions at unactivated carbon atoms
- 7. Avoid end-game obstacles in total synthesis
- 8. Doing reactions in water at room temperature
- 9. Prediction of physical properties and structure from chemical composition
- 10. Truely understand bonding

A Synthesis Chemist's Wish List

Collaborations

- 1. Communicate with biologists and learn their alphabet (acronyms!)
- 2. Finish the synthesis before the theory changes, or the interest wanes

Nature

- 1. Understand events at the molecular level
- 2. Better drug design based on fact not dogma
- 3. Use synthesis to solve Nature's mysteries

• Abstract, psychic and personal

- 1. Seeing better through the mind's eye
- 2. Presence of mind and attention to detail
- 3. Exploiting serendipitous and chance observations
- 4. Keeping up with the literature (and retrieving information fast)
- 5. Stretching the day's hours ... and stopping to smell the roses.

DRUG DISCOVERY

A SYNTHETIC CHEMIST'S PERSPECTIVE AND INVOLVEMENT:

INSTRUMENTAL, COMPUTATION, PHYSICO-CHEMICAL, BIOTECHNOLOGY, GENOMICS, COMBICHEM

CHALLENGES:

- UNDERSTANDING INTERACTIONS AT THE MOLECULAR LEVEL (RECOGNITION, ETC.)
- CHEMICAL SOLUTIONS TO BIOLOGICAL PROBLEMS (DISEASE)
- BETTER DRUGS (QUALITY OF LIFE)

EPOXIDATION OF NON-ALLYLIC ALCOHOLS (E. JACOBSEN)

S. S. Mn^{III} (salen) Cl

CLINICALLY IMPORTANT TARGETS IN NEED OF PRACTICAL SYNTHESES (20 steps or less)

Taxol

Nicolaou (1994) Holton (1994) Danishefsky (1995) Wender (1997) Mukaiyama (1998) Kuwajima (1998)

Schreiber (1996) Marshall (1998) Smith (1999) Paterson (1999)

AN "IDEAL" SCENARIO FOR DRUG DESIGN

Disease ⇒ Biochemical Pathway ⇒ Enzyme ⇒ Function

Hit

Enzyme Crystal Structure

Small Molecule

Chemistry
Inhibitor

(chance)

Enzyme-Inhibitor Co-Crystal

Enzyme-Inhibitor Docking

Modeling

Optimizing binding interactions via chemistry

Bioactive Conformation

•

True lead? -

"Rational" Design

PROTOTYPICAL OF DRUG DESIGN

INHIBITION OF THROMBIN

Lessons Learned from Modeling and Enzyme-Inhibitor X-ray Crystal Structures

Ki = 9 nM (Thrombin)

S. Hanessian and coworkers, Bioorg. Med. Chem. Lett. 2000, 10, 243.

Irreversible inhibitor

Ser 195 (Pink) Gly 216 (PPACK) Asp 189 Reversible NH/ H₂N Inhibitor (Yellow)

Ki = 9 nM (Thrombin)

X-Ray co-Crystal of Thrombin with Prototypical Inhibitor (Yellow)

Prototypical Drug Design

Inhibition of Matrix Metalloproteases

S. Hanessian and coworkers, Bioorg. Med. Chem. Lett. 1999, 9, 1691.

INHIBITION OF ADENYLOSUCCINATE SYNTHETASE (The « Creation » of an Inhibitor)

S. Hanessian and coworkers, Angew. Chem. Int. Ed. 1999, 38, 3159.

R. Fonne-Pfister¹, P. Chemla¹, E. Ward³, M. Girardet¹, K.E. Kreuz¹, R. B. Honzatko⁴, H. J. Fromm⁴, H.-P. Schar¹, M. G. Grutter², and S. W. Cowan-Jacob²

Proc. Natl. Acad. Sci. USA, 1996, 93, 9431

¹Research and Development, Crop Protection, and ²Core Drug Discovery Technologies, Pharmaceutical Division, Ciba-Geigy Ltd., Switzerland; ³Biotechnology, Research Unit, Ciba-Geigy Ltd., U.S.A.; ⁴Iowa State University;

ONE ENZYME: TWO INHIBITORS

Adenylosuccinate | Fumarate | NH₂ |

HO-P-07

ÒН

-COOH

,COOH

HMP IMP mimic

Aspartate mimic (competitive inhibitor)

R. B. Honzatko *et al*, *Biochemistry*, **1996**, *35*, 15753 lowa State University

S. W. Cowan-Jacob Novartis Crop Protection

JOINING FORCES AND BRIDGING THE GAP

Enzyme Enzyme Enzyme

Enzyme Enzyme

HPO
$$_4^{2-}$$

Asp 13

HO-P-O HN OH

Arg 303

HO-P-O HN OH

NOH

Enzyme COOH

 $_{0H}$
 $_{0H$

University of Montreal - Novartis Crop Protection

Dr. P. Chemla; Dr. K. Gohda

AdSS - S-Hybrid complex

AdSS - R-Hybrid complex

