Alois Fürstner

Max-Planck-Institut für Kohlenforschung Mülheim/Ruhr, Germany

TINKERING WITH NATURES MACROLIDES

OUR AGENDA

ACIE 2000, 39, 3012

A. Fürstner, P. W. Davies, ACIE 2007, 46, 3410

carbenoid

rendition

IRON CATALYSIS

Fe^{-II}: [Ar] 3d⁸ 4s²

Pd⁰: [Kr] 3d¹⁰ 4s⁰ Cu^{+I}: [Kr] 3d¹⁰ 4s⁰

B. D. Sherry, A. Fürstner, Acc. Chem. Res., in press

THE AMPHIDINOLIDES

secondary metabolites produced by marine dinoflagellates (*Amphidinium* sp.) living in symbiosis with Okinawan marine flatworms

Review: J.-I. Kobayashi et al., Nat. Prod. Rep. 2004, 21, 77

"OUR" AMPHIDINOLIDES

Amphidinolide H ACIE **2007**, 46, 9265

very scarce mixed polyketide biosynthesis (very) potent cytotoxicity generally unknown mode of action

very scarce cytotoxic secondary metabolite of symbiotic dinoflagellate *Amphidinium sp.*, cf. :
J. Kobayashi et al., *JOC* 2003, *68*, 5339 (A_X); *JOC* 2003, *68*, 9109 (A_Y)
for a review on the amphidinolides see: J. Kobayashi et al., *Nat. Prod. Rep.* 2004, *21*, 77

AMPHIDINOLIDE X: RETROSYNTHETIC ANALYSIS

AMPHIDINOLIDE X: STRATEGIC DISCONNECTION

IRON CATALYZED SYNTHESIS OF ALLENOLS

A. Fürstner, M. Méndez, Angew. Chem. Int. Ed. 2003, 42, 5355

for a short review on Fe-catalyzed cross coupling, see: A. Fürstner, R. Martin Chem. Lett. 2005, 34, 624

TOTAL SYNTHESIS OF AMPHIDINOLIDE X

FIRST TOTAL SYNTHESIS OF AMPHIDINOLIDE X

O. Lepage, E. Kattnig, A. Fürstner, J. Am. Chem. Soc. 2004, 126, 15970

A. Fürstner, E. Kattnig, O. Lepage J. Am. Chem. Soc. 2006, 128, 9194

J. Kobayashi et al., Nat. Prod. Rep. 2004, 21, 77

very scarce mixed polyketide biosynthesis (very) potent cytotoxicity interferes with actin other biological targets?

WHAT IS THE RIGHT ORDER?

metathesis

LITERATURE PRECEDENT

G. Pattenden et al., Tetrahedron Lett. 2000, 41, 7373

other studies toward amphidinolides B, H and G were reported by Kobayashi, Chakraborty, Nishiyama, Myles, Carter, Crews, Nelson, Marco, Kalesse, Zhao

TOWARD AMPHIDINOLIDE H

for the methodology, see: Chem. Commun. 2008, 2873

decomposition

TOWARD AMPHIDINOLIDE H (II)

dr = 2:1

A. F. with L. C. Bouchez, J.-A. Funel, V. Lipins, F.-H. Porée, R. Gilmour, F. Beaufils, D. Laurich, M. Tamiya Angew. Chem. Int. Ed. 2007, 46, 9265

AMPHIDINOLIDE V

Isolation: J.-I. Kobayashi et al., Tetrahedron Lett. 2000, 41, 713

RING CLOSING ALKYNE METATHESIS (RCAM)

A. Fürstner, G. Seidel, Angew. Chem. Int. Ed. 1998, 110, 1758

Review on alkyne metathesis: A. Fürstner, P. W. Davies, Chem. Commun. 2005, 2307

A. Fürstner, C. Mathes, C. W. Lehmann, J. Am. Chem. Soc. 1999, 121, 9453

FURTHER IMPROVEMENT

W. Zhang, S. Kraft, J. S. Moore, *Chem. Commun.* 2003, 832; idem, *J. Am. Chem. Soc.* 2004, *126*, 392;
 See also: C. C. Cummins et al., *Organometallics* 2003, *22*, 3351.

TOWARDS AMPHIDINOLIDE V

TOTAL SYNTHESIS OF AMPHIDINOLIDE V

A. F. with O. Larionov, S. Flügge Angew. Chem. Int. Ed. 2007, 46, 5545

potent actin microfilament disrupting agents: I. Spector et al., Science 1983, 219, 493

EN ROUTE TO THE LATRUNCULINS

for a comprehensive study on Fe-catalyzed cross coupling reactions of enol triflates see:

B. Scheiper, M. Bonnekessel, H. Krause, A. Fürstner, J. Org. Chem. 2004, 69, 3943

TOTAL SYNTHESIS OF LATRUNCULIN B

in the absence of Fe cat.: < 30% yield

using Cu(I) in catalytic or stoichiometric amounts instead of Fe cat. leads to decomposition

for a short review on Fe-catalyzed cross coupling, see: A. Fürstner, R. Martin Chem. Lett. 2005, 34, 624

ENYNE-YNE METATHESIS

L. Turet, A. Fürstner, Angew. Chem. Int. Ed. 2005, 44, 3462

no derivative of the natural product known that retains any significant bioactivity

DIVERTED TOTAL SYNTHESIS

A. Fürstner, D. Kirk, M. Fenster, C. Aissa, D. De Souza, O. Müller, PNAS 2005, 102, 8103

QM/MM CALCULATIONS

Latrunculin A / Actin Complex

refined and corrected picture of H-bonding network importance of hydrophopic interactions

"Lat 32" / Actin Complex

different but equally strong hydrogen bond network hydrophobic interactions optimized

with Prof. W. Thiel, Dr. T. Tuttle, Dr. C. Nevado, Chem. Eur. J. **2007**, *13*, 135

A RELEVANT TARGET?

extremely scarce, very cytotoxic (average $GI_{50} = 13 \text{ nM}$) in vivo activity (T/C = 150%)

no "COMPARE" correlation with any standard anticancer agent unknown mode of action

RETROSYNTHETIC ANALYSIS

BUILDING BLOCKS

PREPARATION OF THE SECO-ACID

A. Fürstner, C. Aissa, C. Chevrier, F. Teplý, C. Nevado, M. Tremblay *Angew. Chem. Int. Ed.* **2006**, *45*, 5832 for a low yielding Shiina-macrolactonization approach, see: P. Helquist et al., *Org. Lett.* **2007**, *9*, 4619

RETROSYNTHETIC ANALYSIS (II)

LITERATURE PRECEDENCE

independent of temperature, solvent, concentration

J. Wagner et al., JACS 2003, 125, 3849; L. A. Paquette et al., Helv. Chim. Acta 2002, 85, 3033

2nd APPROACH

decomposition

"PROFUMO SYNDROME"

